Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537557

RESUMO

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Assuntos
Yarrowia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940906

RESUMO

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Assuntos
Biofilmes , Botrytis , Fragaria , Proteínas Fúngicas , Hifas , Proteínas de Membrana , Doenças das Plantas , Botrytis/patogenicidade , Botrytis/genética , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Virulência , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fragaria/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vitis/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Deleção de Genes
3.
J Invertebr Pathol ; 206: 108153, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866297

RESUMO

Introduced into Europe from North America 150 years ago alongside its native crayfish hosts, the invasive pathogen Aphanomyces astaci is considered one of the main causes of European crayfish population decline. For the past two centuries, this oomycete pathogen has been extensively studied, with the more recent efforts focused on containing and monitoring its spread across the continent. However, after the recent introduction of new strains, the newly-discovered diversity of A. astaci in North America and several years of coevolution with its European host, a new assessment of the traits linked to the pathogen's virulence is much needed. To fill this gap, we investigated the presence of phenotypic patterns (i.e., in vitro growth and sporulation rates) possibly associated with the pathogen's virulence (i.e., induced mortality in crayfish) in a collection of 14 A. astaci strains isolated both in North America and in Europe. The results highlighted a high variability in virulence, growth rate and motile spore production among the different strains, while the total-sporulation rate was more similar across strains. Surprisingly, growth and sporulation rates were not significantly correlated with virulence. Furthermore, none of the analysed parameters, including virulence, was significantly different among the major A. astaci haplogroups. These results indicate that each strain is defined by a characteristic combination of pathogenic features, specifically assembled for the environment and host faced by each strain. Thus, canonical mitochondrial markers, often used to infer the pathogen's virulence, are not accurate tools to deduce the phenotype of A. astaci strains. As the diversity of A. astaci strains in Europe is bound to increase due to translocations of new carrier crayfish species from North America, there is an urgent need to deepen our understanding of A. astaci's virulence variability and its ability to adapt to new hosts and environments.

4.
Mol Microbiol ; 117(3): 569-577, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34592794

RESUMO

Advances in microfabrication technology, and its increasing accessibility, allow us to explore fungal biology as never before. By coupling molecular genetics with fluorescence live-cell imaging in custom-designed chambers, we can now probe single yeast cell responses to changing conditions over a lifetime, characterise population heterogeneity and investigate its underlying causes. By growing filamentous fungi in complex physical environments, we can identify cross-species commonalities, reveal species-specific growth responses and examine physiological differences relevant to diverse fungal lifestyles. As affordability and expertise broadens, microfluidic platforms will become a standard technique for examining the role of fungi in cross-kingdom interactions, ranging from rhizosphere to microbiome to interconnected human organ systems. This review brings together the perspectives already gained from studying fungal biology in microfabricated systems and outlines their potential in understanding the role of fungi in the environment, health and disease.


Assuntos
Fungos , Microtecnologia , Biologia , Fungos/genética , Humanos , Rizosfera , Saccharomyces cerevisiae
5.
Microb Pathog ; 181: 106186, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269878

RESUMO

BACKGROUND AND OBJECTIVE: Candida tropicalis is among the most prevalent human pathogenic yeast species. Switch states of C. tropicalis differ in virulence traits. Here, we evaluate the effect of phenotypic switching on phagocytosis and yeast-hyphae transition in C. tropicalis. METHODS: C. tropicalis morphotypes included a clinical strain and two switch strains (rough variant and rough revertant). In vitro, phagocytosis assay was performed using peritoneal macrophages and hemocytes. The proportion of hyphal cells was ascertained by scoring morphology using optical microscopy. Expression of the WOR1 (White-opaque regulator 1) and EFG1 (Enhanced filamentous growth protein 1) was determined by quantitative PCR. RESULTS: The rough variant was more resistant to in vitro phagocytosis by peritoneal macrophages than that observed for the clinical strain, while hemocytes phagocytosed clinical and rough variant to the same extent. The rough revertant was more phagocytosed than the clinical strain by both phagocytes. During co-incubation with phagocytic cells, the clinical strain of C. tropicalis exists mainly as blastoconidia. The co-culture of the rough variant with macrophages resulted in a higher percentage of hyphae than blastoconidia cells, while in co-culture with hemocytes, no differences were observed between the percentage of hyphae and blastoconidia. The expression levels of WOR1 in the rough variant co-cultured with phagocytes were significantly higher than they were in the clinical strain. CONCLUSIONS: Differences on phagocytosis and hyphal growth between switch states cells of C. tropicalis co-cultured with phagocytic cells were observed. The pronounced hyphal growth may affect the complex host-pathogen relationship and favor the pathogen to escape phagocytosis. The pleiotropic effects of phenotypic switching suggest that this event may contribute to the success of infection associated with C. tropicalis.


Assuntos
Candida tropicalis , Fagocitose , Humanos , Técnicas de Cocultura , Macrófagos Peritoneais , Morfogênese , Candida albicans
6.
BMC Biol ; 20(1): 125, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637443

RESUMO

BACKGROUND: During the disease cycle, plant pathogenic fungi exhibit a morphological transition between hyphal growth (the phase of active infection) and the production of long-term survival structures that remain dormant during "overwintering." Verticillium dahliae is a major plant pathogen that produces heavily melanized microsclerotia (MS) that survive in the soil for 14 or more years. These MS are multicellular structures produced during the necrotrophic phase of the disease cycle. Polyketide synthases (PKSs) are responsible for catalyzing production of many secondary metabolites including melanin. While MS contribute to long-term survival, hyphal growth is key for infection and virulence, but the signaling mechanisms by which the pathogen maintains hyphal growth are unclear. RESULTS: We analyzed the VdPKSs that contain at least one conserved domain potentially involved in secondary metabolism (SM), and screened the effect of VdPKS deletions in the virulent strain AT13. Among the five VdPKSs whose deletion affected virulence on cotton, we found that VdPKS9 acted epistatically to the VdPKS1-associated melanin pathway to promote hyphal growth. The decreased hyphal growth in VdPKS9 mutants was accompanied by the up-regulation of melanin biosynthesis and MS formation. Overexpression of VdPKS9 transformed melanized hyphal-type (MH-type) into the albinistic hyaline hyphal-type (AH-type), and VdPKS9 was upregulated in the AH-type population, which also exhibited higher virulence than the MH-type. CONCLUSIONS: We show that VdPKS9 is a powerful negative regulator of both melanin biosynthesis and MS formation in V. dahliae. These findings provide insight into the mechanism of how plant pathogens promote their virulence by the maintenance of vegetative hyphal growth during infection and colonization of plant hosts, and may provide novel targets for the control of melanin-producing filamentous fungi.


Assuntos
Policetídeo Sintases , Verticillium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Melaninas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário , Verticillium/metabolismo , Virulência
7.
Infect Immun ; 90(11): e0041622, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214556

RESUMO

Candida albicans is a common cause of human mucosal yeast infections, and invasive candidiasis can be fatal. Antifungal medications are limited, but those targeting the pathogen cell wall or plasma membrane have been effective. Therefore, virulence factors controlling membrane biogenesis are potential targets for drug development. P4-ATPases contribute to membrane biogenesis by selecting and transporting specific lipids from the extracellular leaflet to the cytoplasmic leaflet of the bilayer to generate lipid asymmetry. A subset of heterodimeric P4-ATPases, including Dnf1-Lem3 and Dnf2-Lem3 from Saccharomyces cerevisiae, transport phosphatidylcholine (PC), phosphatidylethanolamine (PE), and the sphingolipid glucosylceramide (GlcCer). GlcCer is a critical lipid for Candida albicans polarized growth and virulence, but the role of GlcCer transporters in virulence has not been explored. Here, we show that the Candida albicans Dnf2 (CaDnf2) requires association with CaLem3 to form a functional transporter and flip fluorescent derivatives of GlcCer, PC, and PE across the plasma membrane. Mutation of conserved substrate-selective residues in the membrane domain strongly abrogates GlcCer transport and partially disrupts PC transport by CaDnf2. Candida strains harboring dnf2-null alleles (dnf2ΔΔ) or point mutations that disrupt substrate recognition exhibit defects in yeast-to-hypha growth transition, filamentous growth, and virulence in systemically infected mice. The influence of CaDNF1 deletion on the morphological phenotypes is negligible, although the dnf1ΔΔ dnf2ΔΔ strain was less virulent than the dnf2ΔΔ strain. These results indicate that the transport of GlcCer and/or PC by plasma membrane P4-ATPases is important for the pathogenicity of Candida albicans.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Camundongos , Animais , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Candida albicans , Virulência , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Hifas , Transportadores de Cassetes de Ligação de ATP/genética
8.
Fungal Genet Biol ; 150: 103549, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675987

RESUMO

The evaluation of morphology is fundamental to comprehend how fungi grow, develop, and interact with the environment. Although fungal growth has been extensively studied associated to two-dimensional geometries, lack of appropriate experimental tools has limited exploration of the complex three-dimensional (3D) structures exhibited by mycelia in more general contexts. In this paper, we report the construction of a light-sheet fluorescence microscope (LSFM) capable of performing time-lapse visualization of 3D biological structures (4D microscopy), and the use of this instrument to follow the dynamics of fungal growth. LSFM uses scanning of selective plane illumination and digital reconstruction to provide 3D images of the specimen. We describe the optical, electronic, and computational means to implement two-color LSFM, and provide detailed procedures for aligning and testing the setup. We successfully demonstrate use of both autofluorescence and specific tagging to image Trichoderma atroviride and Neurospora crassa strains growing in liquid media, over extended times (~12 h) and volumes (~400 × 1500 × 800 µm3) at single-hypha resolution. The excellent image contrast provided by LSFM enables us to visualize the dynamics of mycelial architecture, interactions among hyphae, and measure rates of 3D apical extension. Altogether, our work shows a powerful imaging tool to perform 3D morphological analysis of fungi, from hyphae to mycelium.


Assuntos
Fungos/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imageamento Tridimensional/instrumentação , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos
9.
Microb Pathog ; 154: 104847, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33713749

RESUMO

Colletotrichum orbiculare, an anthracnose disease fungus of cucurbit plants, extends penetration hyphae inside the epidermal cells of host plants. Unlike vegetative hyphae formed on a nutrient rich medium, this pathogen initially develops biotrophic penetration hyphae, which acquire nutrient resources from living host cells and secret effector proteins to suppress host defense responses. Subsequently, the nature of penetration hyphae changes from biotrophy to necrotrophy in response to the interaction with a host plant. Hence, controlling the extension of penetration hyphae is crucial for C. orbiculare infection. Here, we identified CoGRIM19 encoding Nadh-ubiquinone oxidoreductase subunit as a pathogenicity gene. Pathogenicity assays showed that the cogrim19 mutant caused no visible symptoms on cucumber cotyledons. Microscopic observations revealed that the cogrim19 mutant developed an appressorium and penetration hyphae under artificial conditions such as on coverslips or cellulose membranes, but the penetration hyphae of the mutant were retarded in the cucumber cotyledons. Microscopic observations of biotrophy-specific expression fluorescent signals revealed that the biotrophic stage was maintained in the retarded penetration hyphae of the cogrim19 mutant as the penetration of the wild type. In addition to cytological observations, pathogenicity assays using wounded leaves showed that the cogrim19 mutant had an attenuated pathogenesis. Taking our results together, CoGRIM19 is required for invasive hyphal growth inside the epidermal cells of cucumber cotyledons in C. orbiculare.


Assuntos
Colletotrichum , Cucumis sativus , Colletotrichum/genética , Cotilédone , Células Epidérmicas , Proteínas Fúngicas , Doenças das Plantas
10.
Med Mycol ; 59(4): 379-391, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32712662

RESUMO

NDT80-like family genes are highly conserved across a large group of fungi, but the functions of each Ndt80 protein are diverse and have evolved differently among yeasts and pathogens. The unique NDT80 gene in budding yeast is required for sexual reproduction, whereas three NDT80-like genes, namely, NDT80, REP1, and RON1, found in Candida albicans exhibit distinct functions. Notably, it was suggested that REP1, rather than RON1, is required for N-acetylglucosamine (GlcNAc) catabolism. Although Candida tropicalis, a widely dispersed fungal pathogen in tropical and subtropical areas, is closely related to Candida albicans, its phenotypic, pathogenic and environmental adaptation characteristics are remarkably divergent. In this study, we focused on the Ron1 transcription factor in C. tropicalis. Protein alignment showed that C. tropicalis Ron1 (CtRon1) shares 39.7% identity with C. albicans Ron1 (CaRon1). Compared to the wild-type strain, the C. tropicalis ron1Δ strains exhibited normal growth in different carbon sources and had similar expression levels of several GlcNAc catabolic genes during GlcNAc treatment. In contrast, C. tropicalis REP1 is responsible for GlcNAc catabolism and is involved in GlcNAc catabolic gene expressions, similar to C. albicans Rep1. However, REP1 deletion strains in C. tropicalis promote hyphal development in GlcNAc with low glucose content. Interestingly, CtRON1, but not CaRON1, deletion mutants exhibited significantly impaired hyphal growth and biofilm formation. As expected, CtRON1 was required for full virulence. Together, the results of this study showed divergent functions of CtRon1 compared to CaRon1; CtRon1 plays a key role in yeast-hyphal dimorphism, biofilm formation and virulence. LAY ABSTRACT: In this study, we identified the role of RON1, an NDT80-like gene, in Candida tropicalis. Unlike the gene in Candida albicans, our studies showed that RON1 is a key regulator of hyphal formation, biofilm development and virulence but is dispensable for N-acetylglucosamine catabolism in C. tropicalis.


Assuntos
Acetilglucosamina/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/genética , Hifas/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/genética , Candida tropicalis/patogenicidade , Candida tropicalis/fisiologia , Regulação Fúngica da Expressão Gênica , Virulência/genética
11.
Appl Microbiol Biotechnol ; 105(12): 5159-5171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095972

RESUMO

When considering mold prevention strategies, the environmental conditions in which fungi grow need to be taken into consideration. This environment is often characterized by a time-dependent relative humidity, and porous substrate. Growth has mainly been investigated in steady-state experiments. Therefore, the goal of this study is to understand the hyphal growth of Penicillium rubens on porous gypsum, under dynamic humidity conditions. Spores of P. rubens were inoculated on porous gypsum containing nutrients, and placed in a small incubation chamber, allowing for microscopic hyphal observation. The relative humidity in this chamber varied multiple times between a high (close to 100%) and low value (35%, 55%, or 75%). The hyphae reacted to a lowered relative humidity by an immediate growth stop and dehydration. When the relative humidity was increased again, the hyphae re-hydrated and three responses were found: regrowing after approximately 4 h, after a time equal to the germination time, or no regrowth at all. No substantial regrowth was found for fluctuations faster than 4 h. This time-scale was found for multiple decreases in relative humidity, and has been reported for the first time. KEY POINTS: • Hyphae restart growth after a characteristic time of approximately 4 h. • Relative humidity fluctuations of 3 h can suppress hyphal growth. • Hyphae do not regrow after a severe desiccation and short periods of high humidity.


Assuntos
Penicillium , Sulfato de Cálcio , Umidade , Hifas
12.
Fungal Genet Biol ; 137: 103338, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035225

RESUMO

The endoplasmic reticulum (ER) is composed of distinct structural domains that perform diverse essential functions, including the synthesis of membrane lipids and proteins of the cell endomembrane system. The polarized growth of fungal hyphal cells depends on a polarized secretory system, which delivers vesicles to the hyphal apex for localized cell expansion, and that involves a polarized distribution of the secretory compartments, including the ER. Here we show that, additionally, the ER of the ascomycete Podospora anserina possesses a peripheral ER domain consisting of highly dynamic pleomorphic ER sub-compartments, which are specifically associated with the polarized growing apical hyphal cells.


Assuntos
Retículo Endoplasmático/fisiologia , Hifas/crescimento & desenvolvimento , Podospora/crescimento & desenvolvimento , Ciclo Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Podospora/metabolismo
13.
Fungal Genet Biol ; 141: 103412, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445863

RESUMO

During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 µm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.


Assuntos
Motivos de Aminoácidos/genética , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Hifas/genética , Aspergillus nidulans/patogenicidade , Membrana Celular/genética , Polaridade Celular/genética , Endocitose/genética , Exocitose/genética , Proteínas Fúngicas/isolamento & purificação , Hifas/patogenicidade , Peptídeos/genética , Saccharomyces cerevisiae/genética
14.
J Microsc ; 280(2): 75-85, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700404

RESUMO

This work briefly surveys the diversity of selected subcellular characteristics in hyphal tip cells of the fungal kingdom (Mycota). Hyphae are filamentous cells that grow by tip extension. It is a highly polarised mechanism that requires a robust secretory system for the delivery of materials (e.g. membrane, proteins, cell wall materials) to sites of cell growth. These events result it the self-assembly of a Spitzenkörper (Spk), found most often in the Basidiomycota, Ascomycota, and Blastocladiomycota, or an apical vesicle crescent (AVC), present in the most Mucoromycota and Zoopagomycota. The Spk is a complex apical body composed of secretory vesicles, cytoskeletal elements, and signaling proteins. The AVC appears less complex, though little is known of its composition other than secretory vesicles. Both bodies influence hyphal growth and morphogenesis. Other factors such as cytoskeletal functions, endocytosis, cytoplasmic flow, and turgor pressure are also important in sustaining hyphal growth. Clarifying subcellular structures, functions, and behaviours through bioimagining analysis are providing a better understanding of the cell biology and phylogenetic relationships of fungi. LAY DESCRIPTION: Fungi are most familiar to the public as yeast, molds, and mushrooms. They are eukaryotic organisms that inhabit diverse ecological niches around the world and are critical to the health of ecosystems performing roles in decomposition of organic matter and nutrient recycling (Heath, 1990). Fungi are heterotrophs, unlike plants, and comprise the most successful and diverse phyla of eukaryotic microbes, interacting with all other forms of life in associations that range from beneficial (e.g., mycorrhizae) to antagonistic (e.g., pathogens). Some fungi can be parasitic or pathogenic on plants (e.g., Cryphonectria parasitica, Magnaporthe grisea), insects (e.g., Beauveria bassiana, Cordyceps sp.), invertebrates (e.g., Drechslerella anchonia), vertebrates (e.g., Coccidioides immitis, Candia albicans) and other fungi (e.g., Trichoderma viride, Ampelomyces quisqualis). The majority of fungi, however, are saprophytes, obtaining nutrition through the brake down of non-living organic matter.


Assuntos
Fungos/ultraestrutura , Hifas/ultraestrutura , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Endocitose , Fungos/crescimento & desenvolvimento , Fungos/fisiologia , Hifas/crescimento & desenvolvimento , Hifas/fisiologia , Morfogênese , Organelas/ultraestrutura , Filogenia , Vesículas Secretórias/fisiologia , Vesículas Secretórias/ultraestrutura
15.
Cell Mol Life Sci ; 76(21): 4369-4390, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31065746

RESUMO

Permanently polarized cells have developed transduction mechanisms linking polarity sites with gene regulation in the nucleus. In neurons, one mechanism is based on long-distance retrograde migration of transcription factors (TFs). Aspergillus nidulans FlbB is the only known fungal TF shown to migrate retrogradely to nuclei from the polarized region of fungal cells known as hyphae. There, FlbB controls developmental transitions by triggering the production of asexual multicellular structures. FlbB dynamics in hyphae is orchestrated by regulators FlbE and FlbD. At least three FlbE domains are involved in the acropetal transport of FlbB, with a final MyoE/actin filament-dependent step from the subapex to the apex. Experiments employing a T2A viral peptide-containing chimera (FlbE::mRFP::T2A::FlbB::GFP) suggest that apical FlbB/FlbE interaction is inhibited to initiate a dynein-dependent FlbB transport to nuclei. FlbD controls the nuclear accumulation of FlbB through a cMyb domain and a C-terminal LxxLL motif. Overall, results elucidate a highly dynamic pattern of FlbB interactions, which enable timely developmental induction. Furthermore, this system establishes a reference for TF-based long-distance signaling in permanently polarized cells.


Assuntos
Aspergillus nidulans , Padronização Corporal , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Transativadores/fisiologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Padronização Corporal/genética , Núcleo Celular/genética , Polaridade Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Organismos Geneticamente Modificados , Transporte Proteico/genética , Transativadores/química
16.
Biochem Biophys Res Commun ; 517(4): 755-761, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402117

RESUMO

Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, S. cerevisiae Ras2 and C. albicans Ras1, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PKA signaling via Cyr1. However, ScRas2 is unable to activate the GPI-N-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates CaGPI2, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, CaGPI2 downregulates CaGPI19, encoding another GPI-GnT subunit. This has direct consequences for expression of CaERG11, encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it.


Assuntos
Candida albicans/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , AMP Cíclico/biossíntese , Ergosterol/biossíntese , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Proteínas ras/química
17.
Curr Genet ; 65(5): 1185-1197, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30993412

RESUMO

Bax inhibitor-1 (BI-1), an evolutionarily conserved protein, is a suppressor of cell death induced by the proapoptotic protein Bax and is involved in the response to biotic and abiotic stress in animals, plants and yeast. Rice false smut caused by Ustilaginoidea virens is one of the destructive rice diseases worldwide. Although BI-1 proteins are widely distributed across filamentous fungi, few of them are functionally characterized. In this study, we identified a BI-1 protein in U. virens, UvBI-1, which contains a predicted Bax inhibitor-1-like family domain and could suppress the cell death induced by Bax. By co-transformation of the CRISPR/Cas9 construct along with donor DNA fragment containing the hygromycin resistance gene, we successfully generated Uvbi-1 deletion mutants. The UvBI-1 deletion showed an increase in mycelia vegetative growth and conidiation, suggesting this gene acts as a negative regulator of the growth and conidiation. In addition, the Uvbi-1 mutants exhibited higher sensitivity to osmotic and salt stress, hydrogen peroxide stress, and cell wall or membrane stress than the wild-type strain. Furthermore, UvBI-1 deletion was found to cause increased production of secondary metabolites and loss of pathogenicity of U. virens. Taken together, our results demonstrate that UvBI-1 plays a negative role in mycelial growth and conidiation, and is critical for stress tolerance, cell wall integrity, secondary metabolites production and pathogenicity of U. virens. Therefore, this study provides new evidence on the conserved function of BI-1 among fungal organisms and other species.


Assuntos
Proteínas de Membrana/genética , Micélio , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Parede Celular , Deleção de Genes , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Estresse Fisiológico/genética
18.
Fungal Genet Biol ; 123: 25-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508595

RESUMO

The growth of filamentous fungi is a complex process that involves hyphal elongation and branching. Microscopic observations provide a wealth of information on fungal growth, although often requiring laborious manual intervention to record and analyze images. Here, we introduce a novel tool for automated tracking of growth in fungal hyphae that affords quantitative analysis of growth rate and morphology. We supplied a student-grade bright field microscope with stepper motors to enable computer-control of the microscope stage. In addition, we developed an image-processing routine that detects in real-time the tip of a hypha and tracks it as the hypha elongates. To achieve continuous observation of hyphal growth, our system automatically maintains the observed sample within field-of-view and performs periodic autofocus correction in the microscope. We demonstrate automated, continuous tracking of hyphal growth in Trichoderma atroviride with sampling rates of seconds and observation times of up to 14 h. Tracking records allowed us to determine that T. atroviride hyphae grow with characteristic elongation rates of ∼70 nm/s. Surprisingly, we found that prior to the occurrence of an apical branching event the parental hypha stopped growing during a few minutes. These arrest events presented occasionally for subapical branching as well. Finally, from tracking data we found that the persistence length (a measure of filament extension before presenting a change in direction) associated to T. atroviride hyphae is 362 µm. Altogether, these results show how integration of image analysis and computer control enable quantitative microscopic observations of fungal hyphae dynamics.


Assuntos
Fungos/ultraestrutura , Hifas/crescimento & desenvolvimento , Microscopia de Vídeo , Morfogênese , Citoesqueleto/ultraestrutura , Fungos/crescimento & desenvolvimento , Hifas/ultraestrutura
19.
Fungal Genet Biol ; 124: 47-58, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615943

RESUMO

Phosphatidate phosphatases play essential roles in lipid metabolism by converting phosphatidic acid to diacylglycerol. Here, we have investigated the roles of a phosphatidate phosphatase, Pah1, in the fungal pathogen Candida albicans. Deleting PAH1 causes multiple phenotypes, especially severe hyphal defects, increased sensitivity to cell wall stress, and reduced virulence in mice. By qPCR, we detected a significant downregulation of hyphal-specific genes including two key hyphal-promoting genes UME6 and HGC1. Overexpression of UME6 in pah1Δ/Δ cells largely restored the hyphal growth, indicating that the reduced expression of UME6 is primarily responsible for the hyphal defects. We also detected decreased expression of three hyphal-promoting transcription factors EFG1, FLO8, and CPH1 in pah1 mutants, consistent with the reduced expression of UME6. Furthermore, the pah1Δ/Δ mutant exhibited increased sensitivity to cell wall stress. During systemic infection of mice, the mutant showed significantly impaired ability to colonize the kidney and to kill the host. Together, C. albicans PAH1 plays an important role in hyphal growth, adaptability to environmental stresses, and virulence. Thus, Pah1 could be targeted for the development of new antifungal drugs.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Proteínas Fúngicas/fisiologia , Hifas/crescimento & desenvolvimento , Fosfatidato Fosfatase/fisiologia , Animais , Candidíase/microbiologia , Feminino , Deleção de Genes , Camundongos Endogâmicos BALB C , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Virulência
20.
Fungal Genet Biol ; 133: 103282, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629081

RESUMO

Candida albicans is an important opportunistic fungal pathogen, and hyphal polarized growth is critical for its invasive infection to the host. Both the vacuolar transient receptor potential (TRP) Ca2+ channel Yvc1 and the NADPH oxidase Fre8-governed reactive oxygen species (ROS) gradient are involved in hyphal development, but the relationship between Yvc1 and Fre8 during hyphal polarized growth remains to be investigated. Herein, we found that deletion of YVC1 led to dispersed distribution of ROS along the germ tube, while it was concentrated at the hyphal tip in WT cells. Moreover, Fre8 localization was altered as YVC1 was disrupted. Besides, similar to deletion of YVC1, addition of the Ca2+ chelating agent EGTA caused depolarization of Fre8-GFP in the wild-type cells, indicating the critical role of Yvc1-maintained Ca2+ gradient in polarized distribution of Fre8-GFP and consequent disruption of tip ROS gradient. By constructing a series of GFP-tagged polarized growth-related proteins, including Bud6, Exo70 and Lifeact, we found that these proteins, similar to Fre8 and ROS, had depolarized localization in yvc1Δ/Δ. Thus, our work provides a mechanic explanation of Yvc1-governed and ROS-related hyphal polarized growth, and shed a novel light on the role of Ca2+ signaling in maintenance of redox homeostasis and morphogenesis in the fungal pathogens.


Assuntos
Canais de Cálcio/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cálcio/genética , Candida albicans/enzimologia , Polaridade Celular , Deleção de Genes , Hifas/crescimento & desenvolvimento , NADPH Oxidases/metabolismo , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa