Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 81(15): 3216-3226.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34161757

RESUMO

Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animais , Proteínas de Arabidopsis/genética , Sítios de Ligação , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Plantas Geneticamente Modificadas , Domínios Proteicos , Receptores de Glutamato/genética
2.
Mol Cell ; 81(23): 4771-4783.e7, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678168

RESUMO

AMPA receptors (AMPARs) mediate the majority of excitatory neurotransmission. Their surface expression, trafficking, gating, and pharmacology are regulated by auxiliary subunits. Of the two types of TARP auxiliary subunits, type I TARPs assume activating roles, while type II TARPs serve suppressive functions. We present cryo-EM structures of GluA2 AMPAR in complex with type II TARP γ5, which reduces steady-state currents, increases single-channel conductance, and slows recovery from desensitization. Regulation of AMPAR function depends on its ligand-binding domain (LBD) interaction with the γ5 head domain. GluA2-γ5 complex shows maximum stoichiometry of two TARPs per AMPAR tetramer, being different from type I TARPs but reminiscent of the auxiliary subunit GSG1L. Desensitization of both GluA2-GSG1L and GluA2-γ5 complexes is accompanied by rupture of LBD dimer interface, while GluA2-γ5 but not GluA2-GSG1L LBD dimers remain two-fold symmetric. Different structural architectures and desensitization mechanisms of complexes with auxiliary subunits endow AMPARs with broad functional capabilities.


Assuntos
Canais de Cálcio/química , Claudinas/química , Receptores de AMPA/química , Motivos de Aminoácidos , Animais , Microscopia Crioeletrônica , Dimerização , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas/química , Proteínas de Membrana , Conformação Molecular , Técnicas de Patch-Clamp , Polímeros , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Ratos , Transmissão Sináptica
3.
Proc Natl Acad Sci U S A ; 121(6): e2313853121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285949

RESUMO

Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.


Assuntos
Receptores Ionotrópicos de Glutamato , Vertebrados , Animais , Receptores Ionotrópicos de Glutamato/metabolismo , Vertebrados/metabolismo , Receptores de AMPA/genética , Invertebrados , Mamíferos/metabolismo , N-Metilaspartato , Neurotransmissores , Ácido gama-Aminobutírico
4.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675825

RESUMO

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Assuntos
Transtornos do Neurodesenvolvimento , Receptores de AMPA , Estudos de Coortes , Heterozigoto , Humanos , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética
5.
Exp Eye Res ; 150: 106-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26521764

RESUMO

Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies.


Assuntos
Terapia Genética/métodos , Retina/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/terapia
6.
Structure ; 32(7): 966-978.e6, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38677289

RESUMO

Neurotransmitter ligands electrically excite neurons by activating ionotropic glutamate receptor (iGluR) ion channels. Knowledge of the iGluR amino acid residues that dominate ligand-induced activation would enable the prediction of function from sequence. We therefore explored the molecular determinants of activity in rat N-methyl-D-aspartate (NMDA)-type iGluRs (NMDA receptors), complex heteromeric iGluRs comprising two glycine-binding GluN1 and two glutamate-binding GluN2 subunits, using amino acid sequence analysis, mutagenesis, and electrophysiology. We find that a broadly conserved aspartate residue controls both ligand potency and channel activity, to the extent that certain substitutions at this position bypass the need for ligand binding in GluN1 subunits, generating NMDA receptors activated solely by glutamate. Furthermore, we identify a homomeric iGluR from the placozoan Trichoplax adhaerens that has utilized native mutations of this crucial residue to evolve into a leak channel that is inhibited by neurotransmitter binding, pointing to a dominant role of this residue throughout the iGluR superfamily.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Animais , Ratos , Ligantes , Sítios de Ligação , Sequência de Aminoácidos , Ligação Proteica , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Ionotrópicos de Glutamato/química , Receptores Ionotrópicos de Glutamato/genética , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Modelos Moleculares , Humanos , Substituição de Aminoácidos , Domínios Proteicos , Células HEK293 , Glicina/metabolismo , Glicina/química
7.
Cell Rep ; 43(2): 113694, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265937

RESUMO

N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors have essential roles in neurotransmission and synaptic plasticity. Previously, we identified an evolutionarily conserved protein, NRAP-1, that is required for NMDA receptor (NMDAR) function in C. elegans. Here, we demonstrate that NRAP-1 was sufficient to gate NMDARs and greatly enhanced glutamate-mediated NMDAR gating, thus conferring coincident activation properties to the NMDAR. Intriguingly, vertebrate NMDARs-and chimeric NMDARs where the amino-terminal domain (ATD) of C. elegans NMDARs was replaced by the ATD from vertebrate receptors-were spontaneously active when ectopically expressed in C. elegans neurons. Thus, the ATD is a primary determinant of NRAP-1- and glutamate-mediated gating of NMDARs. We determined the crystal structure of NRAP-1 at 1.9-Å resolution, which revealed two distinct domains positioned around a central low-density lipoprotein receptor class A domain. The NRAP-1 structure, combined with chimeric and mutational analyses, suggests a model where the three NRAP-1 domains work cooperatively to modify the gating of NMDARs.


Assuntos
Caenorhabditis elegans , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Caenorhabditis elegans/metabolismo , N-Metilaspartato , Transmissão Sináptica , Ácido Glutâmico
8.
Pestic Biochem Physiol ; 107(3): 285-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267689

RESUMO

γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.


Assuntos
Inseticidas/química , Inseticidas/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Sítio Alostérico , Animais , Antagonistas GABAérgicos/química , Antagonistas GABAérgicos/metabolismo , Moscas Domésticas , Ivermectina/análogos & derivados , Ivermectina/metabolismo
9.
Cell Rep ; 42(2): 112124, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857176

RESUMO

Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.


Assuntos
Anticonvulsivantes , Receptores de Ácido Caínico , Receptores de Ácido Caínico/metabolismo , Microscopia Crioeletrônica
10.
Cell Calcium ; 106: 102623, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853264

RESUMO

Upon postsynaptic glutamate receptor activation, the cytosolic Ca2+ concentration rises and initiates signaling and plasticity in spines. The plasma membrane Ca2+ ATPase (PMCA) is a major player to limit the duration of cytosolic Ca2+ signals. It forms complexes with the glycoprotein neuroplastin (Np) isoforms Np55 and Np65 and functionally interplays with N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors (iGluNRs). Moreover, binding of the Np65-specific extracellular domain to Ca2+-permeable GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type ionotropic glutamate receptors (iGluA1Rs) was found to be required for long-term potentiation (LTP). However, the link between PMCA and iGluRs function to regulate cytosolic Ca2+ signals remained unclear. Here, we report that Np65 coordinates PMCA and iGluRs' functions to modulate the duration and amplitude of cytosolic Ca2+ transients in dendrites and spines of hippocampal neurons. Using live-cell Ca2+ imaging, acute pharmacological treatments, and GCaMP5G-expressing hippocampal neurons, we discovered that endogenous or Np65-promoted PMCA activity contributes to the restoration of basal Ca2+ levels and that this effect is dependent on iGluR activation. Super-resolution STED and confocal microscopy revealed that electrical stimulation increases the abundance of synaptic neuroplastin-PMCA complexes depending on iGluR activation and that low-rate overexpression of Np65 doubled PMCA levels and decreased cell surface levels of GluN2A and GluA1 in dendrites and Shank2-positive glutamatergic synapses. In neuroplastin-deficient hippocampi, we observed reduced PMCA and unchanged GluN2B levels, while GluN2A and GluA1 levels were imbalanced. Our electrophysiological data from hippocampal slices argues for an essential interplay of PMCA with GluN2A- but not with GluN2B-containing receptors upon induction of synaptic plasticity. Accordingly, we conclude that Np65 may interconnect PMCA with core players of glutamatergic neurotransmission to fine-tune the Ca2+ signal regulation in basal synaptic function and plasticity.


Assuntos
Adenosina Trifosfatases , Receptores Ionotrópicos de Glutamato , Adenosina Trifosfatases/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 1029210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457557

RESUMO

Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.


Assuntos
Neoplasias , Humanos , Biomarcadores , Glutamatos , Sistema Nervoso Central , Aminoácidos
12.
Brain Sci ; 12(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884751

RESUMO

Brain control by locus coeruleus (LC) neurons involves afferent glutamate (Glu) inputs. In newborns, LC Glu receptors and responses may be sparse due to immaturity of the brain circuits providing such input. However, we reported, using newborn rat brain slices, that Glu and its ionotropic receptor (iGluR) agonist NMDA transform spontaneous local field potential (LFP) rhythm. Here, we studied whether α-amino-3-hydroxy-5-methyl-4-isoxazole propionic-acid (AMPA) and kainate (KA) iGluR subtypes also transform the LFP pattern. AMPA (0.25-0.5 µM) and KA (0.5-2.5 µM) merged ~0.2 s-lasting bell-shaped LFP events occurring at ~1 Hz into ~40% shorter and ~4-fold faster spindle-shaped and more regular sinusoidal oscillations. The AMPA/KA effects were associated with a 3.1/4.3-fold accelerated phase-locked single neuron spiking due to 4.0/4.2 mV depolarization while spike jitter decreased to 64/42% of the control, respectively. Raising extracellular K+ from 3 to 9 mM increased the LFP rate 1.4-fold or elicited slower multipeak events. A blockade of Cl--mediated inhibition with gabazine (5 µM) plus strychnine (10 µM) affected neither the control rhythm nor AMPA/KA oscillations. GYKI-53655 (25 µM) blocked AMPA (but not KA) oscillations whereas UBP-302 (25 µM) blocked KA (but not AMPA) oscillations. Our findings revealed that AMPA and KA evoke a similar novel neural network discharge pattern transformation type by acting on pharmacologically distinct AMPAR and KA receptors. This shows that already the neonatal LC can generate oscillatory network behaviors that may be important, for example, for responses to opioids.

13.
Brain Sci ; 12(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35625039

RESUMO

Locus coeruleus (LC) neurons are controlled by glutamatergic inputs. Here, we studied in brain slices of neonatal rats NMDA and glutamate effects on phase-locked LC neuron spiking at ~1 Hz summating to ~0.2 s-lasting bell-shaped local field potential (LFP). NMDA: 10 µM accelerated LFP 1.7-fold, whereas 25 and 50 µM, respectively, increased its rate 3.2- and 4.6-fold while merging discrete events into 43 and 56% shorter oscillations. After 4-6 min, LFP oscillations stopped every 6 s for 1 s, resulting in 'oscillation trains'. A dose of 32 µM depolarized neurons by 8.4 mV to cause 7.2-fold accelerated spiking at reduced jitter and enhanced synchrony with the LFP, as evident from cross-correlation. Glutamate: 25-50 µM made rhythm more irregular and the LFP pattern could transform into 2.7-fold longer-lasting multipeak discharge. In 100 µM, LFP amplitude and duration declined. In 25-50 µM, neurons depolarized by 5 mV to cause 3.7-fold acceleration of spiking that was less synchronized with LFP. Both agents: evoked 'post-agonist depression' of LFP that correlated with the amplitude and kinetics of Vm hyperpolarization. The findings show that accelerated spiking during NMDA and glutamate is associated with enhanced or attenuated LC synchrony, respectively, causing distinct LFP pattern transformations. Shaping of LC population discharge dynamics by ionotropic glutamate receptors potentially fine-tunes its influence on brain functions.

14.
Structure ; 29(2): 161-169.e4, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33027636

RESUMO

Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures of Arabidopsis thaliana GLR3.2 ligand-binding domain (LBD) in complex with glycine and methionine to 1.58- and 1.75-Å resolution, respectively. Our structures show a fold similar to that of iGluRs, but with several secondary structure elements either missing or different. The closed clamshell conformation of GLR3.2 LBD suggests that both glycine and methionine act as agonists. The mutation R133A strongly increases the constitutive activity of the channel, suggesting that the LBD mutated at the residue critical for agonist binding produces a more stable closed clamshell conformation. Furthermore, our structures explain the promiscuity of GLR activation by different amino acids, confirm evolutionary conservation of structure between GLRs and iGluRs, and predict common molecular principles of their gating mechanisms driven by bilobed clamshell-like LBDs.


Assuntos
Proteínas de Arabidopsis/química , Receptores de Glutamato/química , Arabidopsis , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de Glutamato/metabolismo
15.
Neuron ; 101(4): 738-747.e3, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30654923

RESUMO

Thermosensation is critical for avoiding thermal extremes and regulating body temperature. While thermosensors activated by noxious temperatures respond to hot or cold, many innocuous thermosensors exhibit robust baseline activity and lack discrete temperature thresholds, suggesting they are not simply warm and cool detectors. Here, we investigate how the aristal Cold Cells encode innocuous temperatures in Drosophila. We find they are not cold sensors but cooling-activated and warming-inhibited phasic thermosensors that operate similarly at warm and cool temperatures; we propose renaming them "Cooling Cells." Unexpectedly, Cooling Cell thermosensing does not require the previously reported Brivido Transient Receptor Potential (TRP) channels. Instead, three Ionotropic Receptors (IRs), IR21a, IR25a, and IR93a, specify both the unique structure of Cooling Cell cilia endings and their thermosensitivity. Behaviorally, Cooling Cells promote both warm and cool avoidance. These findings reveal a morphogenetic role for IRs and demonstrate the central role of phasic thermosensing in innocuous thermosensation. VIDEO ABSTRACT.


Assuntos
Proteínas de Drosophila/metabolismo , Neurogênese , Receptores Ionotrópicos de Glutamato/metabolismo , Células Receptoras Sensoriais/metabolismo , Sensação Térmica , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Ionotrópicos de Glutamato/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Termotolerância
16.
Neuron ; 98(6): 1080-1098, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29953871

RESUMO

Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos , Plasticidade Neuronal , Neurotransmissores/metabolismo , Optogenética , Receptores Ionotrópicos de Glutamato/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica
17.
Anticancer Agents Med Chem ; 18(4): 506-520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623852

RESUMO

Receptors of glutamic acid are known for over 30 years for their action and for about 20 years for their structure. Presence of at least three classes of ionotropic receptors was confirmed at the beginning of 80'. Recognition of the sequence and first cloning were done at the beginning of 90'. In 1994 ligand binding site was recognized at the junction of two subunits S1-S2 in the ligand-binding domain. Since then, many subtypes of ionotropic and metabotropic glutamate receptors were recognized, together with their localization and functions. In the meantime numerous orthosteric ligands, both agonists and antagonists were developed especially for NMDA ion channels. Their usefulness as drugs was rather low, due to the involvement in the excitatory tract. More interest was focused on metabotropic receptors, which are GPSR's and can be modulated both by orthosteric and allosteric modulators. It seems like allosterism could be considered as promising future for glutamate receptors and ion channels, especially when first allosteric negative modulators of the mGluR2 went close into the clinical trial.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de Glutamato/metabolismo , Animais , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/química , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
18.
J Neuroimmunol ; 305: 51-58, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284346

RESUMO

The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women. Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and non-pregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluN1, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells.


Assuntos
Depressão/sangue , Regulação da Expressão Gênica/fisiologia , Leucócitos Mononucleares/metabolismo , Gravidez/fisiologia , Subunidades Proteicas/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Adulto , Feminino , Humanos , Masculino , Microscopia Confocal , Gravidez/sangue , Subunidades Proteicas/genética , RNA Mensageiro/metabolismo , Receptores de AMPA , Receptores Ionotrópicos de Glutamato/genética , Receptores de Ácido Caínico , Receptores de N-Metil-D-Aspartato , Fatores Sexuais , Estatísticas não Paramétricas , Adulto Jovem
19.
Elife ; 62017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621663

RESUMO

Insects use hygrosensation (humidity sensing) to avoid desiccation and, in vectors such as mosquitoes, to locate vertebrate hosts. Sensory neurons activated by either dry or moist air ('dry cells' and 'moist cells') have been described in many insects, but their behavioral roles and the molecular basis of their hygrosensitivity remain unclear. We recently reported that Drosophila hygrosensation relies on three Ionotropic Receptors (IRs) required for dry cell function: IR25a, IR93a and IR40a (Knecht et al., 2016). Here, we discover Drosophila moist cells and show that they require IR25a and IR93a together with IR68a, a conserved, but orphan IR. Both IR68a- and IR40a-dependent pathways drive hygrosensory behavior: each is important for dry-seeking by hydrated flies and together they underlie moist-seeking by dehydrated flies. These studies reveal that humidity sensing in Drosophila, and likely other insects, involves the combined activity of two molecularly related but neuronally distinct hygrosensing systems.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Umidade , Receptores Ionotrópicos de Glutamato/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Animal
20.
Neuron ; 96(6): 1303-1316.e6, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29224722

RESUMO

NMDA receptors (NMDARs) are a subtype of postsynaptic ionotropic glutamate receptors that function as molecular coincidence detectors, have critical roles in models of learning, and are associated with a variety of neurological and psychiatric disorders. To date, no auxiliary proteins that modify NMDARs have been identified. Here, we report the identification of NRAP-1, an auxiliary protein in C. elegans that modulates NMDAR function. NMDAR-mediated currents were eliminated in nrap-1 mutants, as was NMDA-dependent behavior. We show that reconstitution of NMDA-gated current in Xenopus oocytes, or C. elegans muscle cells, depends on NRAP-1 and that recombinant NRAP-1 can convert silent NMDARs to functional channels. Our data indicate that NRAP-1, secreted from presynaptic neurons, localizes to glutamatergic synapses, where it associates with postsynaptic NMDARs to modify receptor gating. Thus, our studies reveal a novel mechanism for synaptic regulation via pre-synaptic control of NMDAR-mediated synaptic transmission.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Interneurônios/citologia , Proteínas de Membrana/genética , Movimento/fisiologia , Proteínas Nucleares/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica/genética , Ácido Glutâmico/farmacologia , Interneurônios/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Proteínas de Membrana/efeitos dos fármacos , Movimento/efeitos dos fármacos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Mutação/genética , N-Metilaspartato/farmacologia , Proteínas Nucleares/genética , Oócitos , Proteínas de Ligação a RNA , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/efeitos dos fármacos , Sinapses/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa