Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Cell Commun Signal ; 22(1): 153, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414063

RESUMO

Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.


Assuntos
Antineoplásicos , Produtos Biológicos , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Epigênese Genética , Pirimidinas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Mutação/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia
2.
BMC Cancer ; 23(1): 827, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670241

RESUMO

BACKGROUND: Abelson (ABL) tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML); however, many patients develop resistance during ABL TKI therapy. Vitamin K2 (VK2) is a crucial fat-soluble vitamin used to activate hepatic coagulation factors and treat osteoporosis. Although VK2 has demonstrated impressive anticancer activity in various cancer cell lines, it is not known whether VK2 enhances the effects of asciminib, which specifically targets the ABL myristoyl pocket (STAMP) inhibitor. METHOD: In this work, we investigated whether VK2 contributed to the development of CML cell lines. We also investigated the efficacy of asciminib and VK2 by using K562, ponatinib-resistant K562 (K562 PR), Ba/F3 BCR-ABL, and T315I point mutant Ba/F3 (Ba/F3 T315I) cells. RESULTS: Based on data from the Gene Expression Omnibus (GEO) database, gamma-glutamyl carboxylase (GGCX) and vitamin K epoxide reductase complex subunit 1 (VKORC1) were elevated in imatinib-resistant patients (GSE130404). UBIA Prenyltransferase Domain Containing 1 (UBIAD1) was decreased, and K562 PR cells were resistant to ponatinib. In contrast, asciminib inhibited CML cells and ponatinib resistance in a dose-dependent manner. CML cells were suppressed by VK2. Caspase 3/7 activity was also elevated, as was cellular cytotoxicity. Asciminib plus VK2 therapy induced a significantly higher level of cytotoxicity than use of each drug alone. Asciminib and VK2 therapy altered the mitochondrial membrane potential. CONCLUSIONS: Asciminib and VK2 are suggested as a novel treatment for ABL-TKI-resistant cells since they increase treatment efficacy. Additionally, this treatment option has intriguing clinical relevance for patients who are resistant to ABL TKIs.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Vitamina K 2 , Inibidores de Proteínas Quinases , Tirosina , Vitamina K Epóxido Redutases
3.
J Enzyme Inhib Med Chem ; 38(1): 2228515, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470410

RESUMO

BCR-ABL inhibition is an effective therapeutic approach for the treatment of chronic myeloid leukaemia (CML). Herein, we report the discovery of AKE-72 (5), a diarylamide 3-aminoindazole, as a potent pan-BCR-ABL inhibitor, including the imatinib-resistant mutant T315I. A focussed array of compounds 4a, 4b, and 5 has been designed based on our previously reported indazole I to improve its BCR-ABLT315I inhibitory activity. Replacing the morpholine moiety of I with the privileged tail (4-ethylpiperazin-1-yl)methyl afforded 5 (AKE-72) with IC50 values of < 0.5 nM, and 9 nM against BCR-ABLWT and BCR-ABLT315I, respectively. Moreover, AKE-72 potently inhibited a panel of other clinically important mutants in single-digit nanomolar IC50 values. AKE-72 elicited remarkable anti-leukemic activity against K-562 cell line (GI50 < 10 nM, TGI = 154 nM). In addition, AKE-72 strongly inhibited the proliferation of Ba/F3 cells expressing native BCR-ABL or its T315I mutant. Overall, AKE-72 may serve as a promising candidate for the treatment of CML, including those harbouring T315I mutation.


Assuntos
Indazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Indazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Benzamidas/farmacologia , Linhagem Celular Tumoral , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Mutação , Proliferação de Células , Apoptose
4.
J Enzyme Inhib Med Chem ; 38(1): 2189097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927348

RESUMO

The design of kinase inhibitors targeting the oncogenic kinase BCR-ABL constitutes a promising paradigm for treating chronic myeloid leukaemia (CML). Nevertheless, the efficacy of imatinib, the first FDA-approved targeted therapy for CML, is curbed by the emergence of resistance. Herein, we report the identification of the 2-methoxyphenyl ureidobenzothiazole AK-HW-90 (2b) as a potent pan-BCR-ABL inhibitor against imatinib-resistant mutants, particularly T315I. A concise array of six compounds 2a-f was designed based on our previously reported benzothiazole lead AKE-5l to improve its BCR-ABLT315I inhibitory activity. Replacing the 6-oxypicolinamide moiety of AKE-5l with o-methoxyphenyl and changing the propyl spacer with phenyl afforded 2a and AK-HW-90 (2b) with IC50 values of 2.0 and 0.65 nM against BCR-ABLT315I, respectively. AK-HW-90 showed superior anticancer potency to imatinib against multiple cancer cells (NCI), including leukaemia K-562. The obtained outcomes offer AK-HW-90 as a promising candidate for the treatment of CML and other types of cancer.


Assuntos
Proteínas de Fusão bcr-abl , Pirimidinas , Mesilato de Imatinib/farmacologia , Proteínas de Fusão bcr-abl/genética , Pirimidinas/farmacologia , Piperazinas/farmacologia , Benzamidas/farmacologia , Apoptose
5.
Proc Natl Acad Sci U S A ; 117(32): 19221-19227, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719139

RESUMO

Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.


Assuntos
Antineoplásicos/farmacologia , Mesilato de Imatinib/farmacologia , Neoplasias/enzimologia , Proteínas Oncogênicas v-abl/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Oncogênicas v-abl/química , Proteínas Oncogênicas v-abl/metabolismo
6.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770876

RESUMO

Heat shock protein 90 (HSP90) facilitates folding and stability and prevents the degradation of multiple client proteins. One of these HSP90 clients is BCR-ABL, the oncoprotein characteristic of chronic myeloid leukemia (CML) and the target of tyrosine kinase inhibitors, such as imatinib. Alvespimycin is an HSP90 inhibitor with better pharmacokinetic properties and fewer side effects than other similar drugs, but its role in overcoming imatinib resistance is not yet clarified. This work studied the therapeutic potential of alvespimycin in imatinib-sensitive (K562) and imatinib-resistant (K562-RC and K562-RD) CML cell lines. Metabolic activity was determined by the resazurin assay. Cell death, caspase activity, mitochondrial membrane potential, and cell cycle were evaluated by means of flow cytometry. Cell death was also analyzed by optical microscopy. HSPs expression levels were assessed by western blotting. Alvespimycin reduced metabolic activity in a time-, dose-, and cell line-dependent manner. Resistant cells were more sensitive to alvespimycin with an IC50 of 31 nM for K562-RC and 44 nM for K562-RD, compared to 50 nM for K562. This drug induced apoptosis via the mitochondrial pathway. In K562 cells, alvespimycin induced cell cycle arrest in G0/G1. As a marker of HSP90 inhibition, a significant increase in HSP70 expression was observed. Our results suggest that alvespimycin might be a new therapeutic approach to CML treatment, even in cases of resistance to imatinib.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Choque Térmico , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
7.
Clin Exp Pharmacol Physiol ; 49(12): 1334-1341, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36066385

RESUMO

Imatinib, an inhibitor of tyrosine kinase, shows remarkable efficacy in chronic myeloid leukaemia (CML). Autophagy protects tumour cells against chemotherapeutic stimulation and contributes to imatinib resistance in CML. Kinesin family member 23 (KIF23) is involved in cytokinesis and associated with autophagy. The role of KIF23 in autophagy-induced imatinib resistance in CML was investigated. First, to induce drug resistance, CML cells were exposed to increasing concentrations of imatinib. The concentration of imatinib resistance in CML cells was screened through upregulation of 50% inhibitory concentration (IC50 ) values. KIF23 was elevated in imatinib-resistant tissues and cells of CML. Second, knockdown of KIF23 reduced IC50 values of imatinib-resistant CML cells to imatinib. Moreover, silence of KIF23 also suppressed cell proliferation and promoted apoptosis of imatinib-resistant CML cells. Third, immunofluorescence analysis showed that the number of LC3 bright spots in imatinib-resistant CML cells was reduced by silence of KIF23. Knockdown of KIF23 upregulated p62 expression and downregulated the expression ratio of LC3-II to LC3-I in imatinib-resistant CML cells. Last, silence of KIF23 decreased nuclear ß-catenin and increased cytoplasmic ß-catenin in imatinib-resistant CML cells. Activator of Wnt/ß-catenin attenuated KIF23 silence-induced increase of apoptosis and decrease of autophagy in imatinib-resistant CML cells. In conclusion, loss of KIF23 repressed autophagy-induced imatinib resistance in CML cells through inactivation of Wnt/ß-catenin pathway.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Antineoplásicos/farmacologia , Apoptose , Autofagia , beta Catenina , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Associadas aos Microtúbulos , Via de Sinalização Wnt
8.
Proc Natl Acad Sci U S A ; 116(21): 10482-10487, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068472

RESUMO

A major obstacle to curing chronic myeloid leukemia (CML) is the intrinsic resistance of CML stem cells (CMLSCs) to the drug imatinib mesylate (IM). Prosurvival genes that are preferentially expressed in CMLSCs compared with normal hematopoietic stem cells (HSCs) represent potential therapeutic targets for selectively eradicating CMLSCs. However, the discovery of such preferentially expressed genes has been hampered by the inability to completely separate CMLSCs from HSCs, which display a very similar set of surface markers. To overcome this challenge, and to minimize confounding effects of individual differences in gene expression profiles, we performed single-cell RNA-seq on CMLSCs and HSCs that were isolated from the same patient and distinguished based on the presence or absence of BCR-ABL. Among genes preferentially expressed in CMLSCs is PIM2, which encodes a prosurvival serine-threonine kinase that phosphorylates and inhibits the proapoptotic protein BAD. We show that IM resistance of CMLSCs is due, at least in part, to maintenance of BAD phosphorylation by PIM2. We find that in CMLSCs, PIM2 expression is promoted by both a BCR-ABL-dependent (IM-sensitive) STAT5-mediated pathway and a BCR-ABL-independent (IM-resistant) STAT4-mediated pathway. Combined treatment with IM and a PIM inhibitor synergistically increases apoptosis of CMLSCs, suppresses colony formation, and significantly prolongs survival in a mouse CML model, with a negligible effect on HSCs. Our results reveal a therapeutically targetable mechanism of IM resistance in CMLSCs. The experimental approach that we describe can be generally applied to other malignancies that harbor oncogenic fusion proteins or other characteristic genetic markers.


Assuntos
Compostos de Bifenilo/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tiazolidinas/uso terapêutico , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Experimental/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Terapia de Alvo Molecular , Fosforilação , Inibidores de Proteínas Quinases , Fatores de Transcrição STAT/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
9.
J Postgrad Med ; 68(2): 93-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34747876

RESUMO

INTRODUCTION: Despite the impressive responses achieved with tyrosine kinase inhibitor (TKI) therapy, treatment resistance develops in 16-33% of patients of chronic myelogenous leukemia (CML). Of the BCR-ABL1 dependent mechanisms, mutations in the tyrosine kinase domain (TKD) are the commonest cause of resistance. MATERIAL AND METHODS: Allele specific oligonucleotide - polymerase chain reaction (ASO-PCR) was done for testing the six common TKD mutations, T315I, G250E, E255K, M244V, M351T, and Y253F. RESULTS AND CONCLUSION: TKD mutation study was done on 83 patients. Of these 44 (53%) were positive for one or more mutations. On analyzing specific mutations, E255K was the commonest mutation seen in 24 (29%) cases, followed by T315I in 23(28%) cases. Y253F mutation was not seen in the present study sample. In the present cohort of 83 patients, 29 (35%) cases were positive for single mutation, 12 (14%) had two mutations and 3 (4%) had three mutations.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Antineoplásicos/uso terapêutico , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/uso terapêutico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação
10.
Genomics ; 113(1 Pt 2): 755-766, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075481

RESUMO

Non-synonymous single nucleotide polymorphisms (nsSNPs) in hOCT1 (encoded by SLC22A1 gene) are expected to affect Imatinib uptake in chronic myeloid leukemia (CML). In this study, sequence homology-based genetic analysis of a set of 270 coding SNPs identified 18 nsSNPs to be putatively damaging/deleterious using eight different algorithms. Subsequently, based on conservation of amino acid residues, stability analysis, posttranscriptional modifications, and solvent accessibility analysis, the possible structural-functional relationship was established for high-confidence nsSNPs. Furthermore, based on the modeling results, some dissimilarities of mutant type amino acids from wild-type amino acids such as size, charge, interaction and hydrophobicity were revealed. Three highly deleterious mutations consisting of P283L, G401S and R402G in SLC22A1 gene that may alter the protein structure, function and stability were identified. These results provide a filtered data to explore the effect of uncharacterized nsSNP and find their association with Imatinib resistance in CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fator 1 de Transcrição de Octâmero/genética , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Antineoplásicos/uso terapêutico , Humanos , Mesilato de Imatinib/uso terapêutico , Simulação de Dinâmica Molecular , Fator 1 de Transcrição de Octâmero/química , Fator 1 de Transcrição de Octâmero/metabolismo
11.
Mol Med ; 27(1): 148, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781898

RESUMO

Imatinib (IM), targeting of BCR-ABL1 tyrosine kinase, is currently one of the first-line choices in the treatment of chronic myeloid leukemia (CML). This study aims to explore the molecular mechanisms underlying IM resistance in CML treatment. 108 CML patients were recruited and grouped according to their sensitivity to IM as the responder group (N = 66) and the non-responder group (N = 42). Real-time quantitative PCR (RT-qPCR) was performed to evaluate the expression of candidate circular RNAs (circRNAs), microRNA (miRNAs) and messenger RNA (mRNAs). No significant difference was noted regarding demographic and clinicopathological characteristics between the responder group and the non-responder group. The expression of circ_0080145, circ_0051886 and ABL1 mRNA was significantly increased, while the expression of miR-203 and miR-637 was decreased in the non-responder group as compared with the responders. By using in-silicon analysis, it was predicted that circ_0080145 and circ_0051886 targeted miR-203 and miR-637 respectively, and ABL1 was found to be shared direct target gene of miR-203 and miR-637. Ectopic over-expression of circ_0080145 and circ_0051886 respectively reduced the expression of miR-203 and miR-637. The expression of ABL1 mRNA/protein was most upregulated in culture cells co-transfected with circ_0080145 and circ_0051886 as compared with those cells individually transfected. This study established the signaling pathways of circ_0080145/miR-203/ABL1 and circ 0051886/miR-637/ABL1. The deregulation of circ_0080145 and circ_0051886 is, at least partially, responsible for the development of IM chemoresistance in CML by regulating expression of ABL1 via modulating expression of miR-203 and miR-637.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases/uso terapêutico , RNA Circular , Antineoplásicos/farmacologia , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , MicroRNAs , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais
12.
Cancer Cell Int ; 21(1): 407, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332577

RESUMO

BACKGROUND: Gastrointestinal stromal tumor (GIST) is a common tumor that originates from the alimentary system mesenchyme. Compared to typical gastrointestinal carcinomas, GISTs exhibit unique malignant behaviors. Bioinformatic tools and subsequent experiments were applied to investigate novel targets involved in GIST progression and imatinib resistance. METHODS: Differences in gene expression profiles between advanced and nonadvanced GISTs were comprehensively analyzed based on the Gene Expression Omnibus (GEO) dataset GSE136755. A protein-protein interaction (PPI) network was constructed to identify the potential target gene. Gene set enrichment analysis (GSEA) was used to elucidate relevant biological events related to the target gene based on the GSE47911 dataset. Subsequently, immunohistochemistry and Kaplan-Meier analysis were performed to validate the prognostic value of the target gene in GISTs. Overexpression of the target gene was conducted to analyze its function in the proliferation, apoptosis, and imatinib resistance of GIST/T1 cells. RESULTS: In the current study, a total of 606 differentially expressed genes (DEGs) were screened based on the GSE136755 dataset, and the upregulated DEGs in advanced GISTs were mainly involved in cell division through functional annotations. The intersecting hub gene, Aurora kinase A (AURKA), was identified by degree and bottleneck algorithms. GSEA revealed that AURKA was involved in cell cycle-related biological processes. Analysis of the Oncomine and GEPIA databases revealed a pattern of elevated AURKA expression in most human malignances. Clinical assays demonstrated that AURKA could be an independent prognostic factor for GISTs. Additionally, overexpression of AURKA was experimentally demonstrated to promote cell proliferation, inhibit cell apoptosis, and enhance imatinib resistance in GIST/T1 cells. CONCLUSIONS: These findings indicated that overexpression of AURKA promoted GIST progression and enhanced imatinib resistance, implying that AURKA is a potential therapeutic target for GISTs.

13.
Mol Biol Rep ; 48(2): 1625-1631, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515349

RESUMO

Chronic Myeloid Leukemia (CML) is a clonal hematopoietic malignancy characterized by the formation of BCR-ABL fusion protein. Imatinib (IMA) is a BCR-ABL tyrosine kinase inhibitor (TKI), which exhibited a high rate of response for newly diagnosed CML patients. Emergence of IMA resistance considered as a major challenge in CML therapy. Recent studies reported the anti-cancer effect of natural extracts such as 6-Shogaol (6-SG) which is extracted from ginger and the mechanisms involved in targeting of cancer cells. In the present study, we aimed to explore the potential anticancer effect of 6-SG on K562S (Imatinib sensitive) and K562R (Imatinib resistant) cells. K562S and K562R cells were incubated with increasing concentrations of 6-SG (5 µM- 50 µM) to determine its cytotoxic and apoptotic effects. Cell viability and apoptosis were investigated with spectrophotometric MTT assay and flow cytometric Annexin V staining, respectively. The mRNA expression levels of apoptotic related genes (BAX and BCL-2) and drug transporter (MDR-1 and MRP-1) genes were evaluated with qRT-PCR. According to our results, 6-SG treatment inhibited cell viability, induced apoptosis in both K562S and K562R cells. Based on our RT-PCR results, 6-SG enhanced pro-apoptotic BAX gene and decreased anti-apoptotic BCL-2 gene expression levels significantly in both treated K562S and K562R cells. Furthermore, 6-SG increased MDR-1 mRNA expression level in K562S and K562R cells in comparison with their control counterparts. Whereas, 6-SG decrease MRP-1 mRNA expression level in K562S cells significantly. It is the first study that reveals the apoptotic effect of 6-SG in CML cell line and IMA resistance. Therefore, 6-SG treatment can be suggested as a promising strategy for CML therapy.


Assuntos
Catecóis/farmacologia , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteína X Associada a bcl-2/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
14.
Surg Today ; 51(9): 1506-1512, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570662

RESUMO

PURPOSE: Imatinib is the standard treatment for unresectable and metastatic GIST. In the late stages, patients undergoing imatinib show drug resistance. Surgical intervention has been occasionally performed for resistant lesions. However, the clinical significance of such intervention remains unclear. METHODS: Between 2006 and 2015, 37 patients were diagnosed with imatinib-resistant GISTs. We performed surgical intervention only for localized resistant lesions. We retrospectively investigated the background characteristics, data on surgical intervention and subsequent treatment, progression-free survival (PFS), and overall survival (OS). RESULTS: Eighteen patients diagnosed with localized resistance received surgical intervention (S-group) and 19 patients diagnosed with generalized resistance were received other TKIs (M-group). In S-group, no serious complications occurred, and all patients restarted imatinib after resection. The median PFS was 14.5 months. Five patients underwent surgical intervention multiple times followed by the continuation of imatinib, and the median duration of imatinib continuation was 22.2 months. Second-line TKIs were administered to 93% of the patients and the dose-intensity and outcome were similar in both groups. The median OS was 47.2 months after surgery. CONCLUSIONS: Surgical intervention could be performed safely and therefore could be followed by the continuation of TKI therapy. Surgical intervention based on the appropriate criteria of resistance might thus be useful for imatinib-resistant GISTs.


Assuntos
Neoplasias Gastrointestinais/cirurgia , Tumores do Estroma Gastrointestinal/cirurgia , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/mortalidade , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
15.
Pharm Biol ; 59(1): 893-903, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34214017

RESUMO

CONTEXT: A portion of patients with chronic myeloid leukaemia (CML) develop resistance to the Bcr-Abl tyrosine kinase inhibitors (TKIs), limiting the clinical applications. Previous results have demonstrated the synergistic effects between cryptotanshinone (CPT) and imatinib on apoptosis of CML cells in vitro. OBJECTIVE: To determine the antileukemia effects of CPT and TKIs on the resistant CML cells, and further investigate the effect of combined treatment of CPT and imatinib on tumour growth and apoptosis in the xenograft model and clarify its regulatory mechanisms. MATERIALS AND METHODS: The combination effects of CPT and second-generation TKIs were evaluated in resistant CML cells K562-R. CPT and imatinib were orally administered once daily for 21 days on K562-R xenografts in nude mice (6 per group). Tumour proliferation and apoptosis were examined by Ki-67, PCNA and TUNEL staining. The expression levels of apoptotic markers and activities of STAT3 and eIF4E pathways were determined via immunohistochemistry staining and western blotting analysis. RESULTS: CPT significantly enhanced the antiproliferative effects of TKIs, via triggering cleavages of caspase proteins, and inhibiting activities of STAT3 and eIF4E pathways. The administration of CPT and imatinib dramatically inhibited the tumour growth of xenografts and achieved a suppression of 60.2%, which is 2.6-fold higher than that of single imatinib group. Furthermore, CPT and imatinib increased the apoptotic rates and markedly decreased the phosphorylation levels of STAT3 and eIF4E. CONCLUSIONS: Our results demonstrated that CPT could significantly enhance the antileukemia efficacy of TKIs, suggesting the therapeutic potential of CPT to overcome CML resistance.


Assuntos
Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Fenantrenos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Nus , Fenantrenos/administração & dosagem , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Mol Med ; 24(4): 2519-2530, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957165

RESUMO

In gastrointestinal stromal tumours (GISTs), the function of bromodomain-containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low-risk/low-risk to high-risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease-free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated-AKT-suppressible caspases 3 and 9 activities, induced LC3-II, exhibited dose-dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki-67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib-resistant GIST through dual blockade of KIT and BRD4.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
17.
Pharmacol Res ; 160: 105058, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619722

RESUMO

Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity. Here, we hypothesize that the HDAC6i compound 7b can lead to BCR-ABL downregulation in CML cells and sensitize them to TKI treatment. The results showed that combination treatment with imatinib and 7b resulted in strong synergistic caspase-dependent apoptotic cell death and drastically reduced the proportion of leukemia stem cells, whereas this treatment only moderately affected healthy cells. Ultimately, the combination significantly decreased colony formation in a semisolid methylcellulose medium and tumor mass in xenografted zebrafish compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation followed by disturbance of key proteins in downstream pathways involved in CML proliferation and survival. Taken together, our results suggest that an HDAC6i potentiates the effect of imatinib and could overcome TKI resistance in CML cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ubiquitinação/efeitos dos fármacos , Animais , Caspases/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Gastric Cancer ; 23(5): 837-847, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32291709

RESUMO

BACKGROUND: The majority of GISTs express mutationally activated KIT. Imatinib and sunitinib are approved KIT-inhibiting therapies. Their efficacy is usually hampered by the acquired multiple secondary drug-resistance KIT mutations. The most problematic resistance subset is GISTs with acquisition of secondary mutations in the KIT activation loop. Here, we establish the spectrum of activity of dasatinib against a comprehensive collection of clinically relevant KIT mutants associated with drug-sensitive and drug-resistant GIST. METHODS: The cellular and in vitro activities of tyrosine kinase inhibitors (TKIs) against mutant KIT were assessed using a panel of engineered and GIST-derived cell lines. The in vivo activities of dasatinib were determined using TKI-resistant xenograft models. RESULTS: In engineered and GIST-derived cell lines, dasatinib potently inhibited KIT with primary mutations in exon 11 or 9 and a range of secondary imatinib-resistant mutations in exons 13 and 14, encoding the ATP-binding pocket, and in exons 17 and 18, encoding the activation loop, with the exception of a substitution at codon T670. Our data show that dasatinib is more potent than imatinib or sunitinib at inhibiting the activity of drug-resistant KIT mutants. Dasatinib also induces regression in GIST-derived xenograft models containing these secondary mutations. A major determinant of the efficacy of dasatinib for the treatment of advanced GIST is the activity of this inhibitor against KIT mutants. CONCLUSION: Dasatinib shows efficacy in cancer models, inhibiting a wide range of oncogenic primary and drug-resistant KIT mutants. These results have implications for the further development of dasatinib precision therapy in GIST patients.


Assuntos
Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biol Pharm Bull ; 43(10): 1526-1533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999163

RESUMO

Imatinib-resistance is a significant concern for Bcr-Abl-positive chronic myelogenous leukemia (CML) treatment. Emodin, the predominant compound of traditional medicine rhubarb, was reported to inhibit the multidrug resistance by downregulating P-glycoprotein of K562/ADM cells with overexpression of P-glycoprotein in our previous studies. In the present study, we found that emodin can be a potential inhibitor for the imatinib-resistance in K562/G01 cells which are the imatinib-resistant subcellular line of human chronic myelogenous leukemia cells with overexpression of breakpoint cluster region-abelson (Bcr-Abl) oncoprotein. Emodin greatly enhanced cell sensitivity to imatinib, suppressed resistant cell proliferation and increased potentiated apoptosis induced by imatinib in K562/G01 cells. After treatment of emodin and imatinib together, the levels of p-Bcr-Abl and Bcr-Abl were significantly downregulated. Moreover, Bcr-Abl important downstream target, STAT5 and its phosphorylation were affected. Furthermore, the expression of Bcr-Abl and signal transducers and activators of transcription 5 (STAT5) related molecules, including c-MYC, MCL-1, poly(ADP-ribose)polymerase (PARP), Bcl-2 and caspase-3, were changed. Emodin also decreased Src expression and its phosphorylation. More importantly, emodin simultaneously targeted both the ATP-binding and allosteric sites on Bcr-Abl by molecular docking, with higher affinity with the myristoyl-binding site for enhanced Bcr-Abl kinase inhibition. Overall, these data indicated emodin might be an effective therapeutic agent for inhibiting resistance to imatinib in CML treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Emodina/farmacologia , Genes abl/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva , Fator de Transcrição STAT5/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Emodina/uso terapêutico , Genes abl/fisiologia , Humanos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Secundária de Proteína , Fator de Transcrição STAT5/metabolismo
20.
J Clin Lab Anal ; 34(2): e23050, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617242

RESUMO

BACKGROUND: This work aimed to evaluate oxidative stress in chronic myeloid leukemia (CML) patients treated with tunisian (IM) vs controls and in CML patients with resistance to IM vs patients without resistance to IM. METHODS: The study included 40 CML patients and 34 controls. Of 40 patients with CML, 26 patients were developed in resistance to IM. The oxidant/antioxidant markers were evaluated by spectrophotometric methods for all used samples. RESULTS: For CML patients, increased malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels were found compared to controls (P < .001; P = .01). Higher catalase (CAT) activity (P = .048) and lower superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, reduced Glutathione (GSH) and vitamin C levels were found in CML patients (P < .001). The comparison between the resistant vs no-resistant CML patients revealed higher MDA level (P = .02) and CAT and SOD activities in IM-resistant patients (P = .04, P = .03). GPx activity was reduced (P = .04). Furthermore, increased mean ratio of MDA/GSH, MDA/GPx, and SOD/(GPx + CAT) was found in IM-resistant patients as compared with no-resistant (P = .01, P = .01, P = .035). The mean ratio of GPx/GSH in the IM-resistant CML patients was lower than in IM no-resistant one (P = .039). For IM-resistant patients, we found negative correlation between MDA level and the ratio SOD/(CAT + GPx) (r = -0.46, P = .002); and positive correlation between SOD and (CAT + GPx) activities (r = 0.38, P = .06) and between GSH level and GPx activity (r = 0.53, P = .01). CONCLUSIONS: Our results have shown a highly disturbed oxidative profile in IM-resistant CML patients as compared to no-resistant. The H2 O2 has a key role in the resistance to IM treatment.


Assuntos
Antineoplásicos/farmacologia , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Antioxidantes/metabolismo , Ácido Ascórbico/sangue , Estudos de Casos e Controles , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Enzimas/sangue , Feminino , Glutationa/sangue , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Resultado do Tratamento , Tunísia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa