RESUMO
Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.
Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.
Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , ApoptoseRESUMO
Growing evidences have proved that tumors evade recognition and attack by the immune system through immune escape mechanisms, and PDL1/Pbrm1 genes have a strong correlation with poor response or resistance to immune checkpoint blockade (ICB) therapy. Herein, a multifunctional biomimetic nanocarrier (siRNA-CaP@PD1-NVs) is developed, which can not only enhance the cytotoxic activity of immune cells by blocking PD1/PDL1 axis, but also reduce tumor immune escape via Pbrm1/PDL1 gene silencing, leading to a significant improvement in tumor immunosuppressive microenvironment. Consequently, the nanocarrier promotes DC cell maturation, enhances the infiltration and activity of CD8+ T cells, and forms long-term immune memory, which can effectively inhibit tumor growth or even eliminate tumors, and prevent tumor recurrence and metastasis. Overall, this study presents a powerful strategy for co-delivery of siRNA drugs, immune adjuvant, and immune checkpoint inhibitors, and holds great promise for improving the effectiveness and safety of current immunotherapy regimens.
Assuntos
Carcinoma Hepatocelular , Terapia Genética , Imunoterapia , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Imunoterapia/métodos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Terapia Genética/métodos , Humanos , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Modelos Animais de Doenças , Biomimética/métodos , Linhagem Celular Tumoral , Materiais Biomiméticos , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inibidores , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacosRESUMO
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.