Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2228): 20210019, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35658677

RESUMO

Cortical visual prostheses that aim to restore sight to the blind require the ability to create neural activity in the visual cortex. Electric stimulation delivered via microelectrodes implanted in the primary visual cortex (V1) has been the most common approach, although conventional electrodes may not effectively confine activation to focal regions and thus the acuity they create may be limited. Magnetic stimulation from microcoils confines activation to single cortical columns of V1 and thus may prove to be more effective than conventional microelectrodes, but the ability of microcoils to drive synaptic connections has not been explored. Here, we show that magnetic stimulation of V1 using microcoils induces spatially confined activation in the secondary visual cortex (V2) in mouse brain slices. Single-loop microcoils were fabricated using platinum-iridium flat microwires, and their effectiveness was evaluated using calcium imaging and compared with that of monopolar and bipolar electrodes. Our results show that compared to the electrodes, the microcoils better confined activation to a small region in V1. In addition, they produced more precise and sustained activation in V2. The finding that microcoil-based stimulation propagates to higher visual centres raises the possibility that complex visual perception, e.g. that requiring sustained synaptic inputs, may be achievable. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.


Assuntos
Córtex Visual Primário , Córtex Visual , Animais , Estimulação Elétrica , Fenômenos Magnéticos , Camundongos , Córtex Visual/fisiologia , Percepção Visual/fisiologia
2.
NMR Biomed ; 34(10): e4578, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34189772

RESUMO

The use of miniaturized NMR receiver coils is an effective approach for improving detection sensitivity in studies using MRS and MRI. By optimizing the filling factor (the fraction of the coil occupied by the sample), and by increasing the RF magnetic field produced per unit current, the sensitivity gain offered by NMR microcoils is particularly interesting when small volumes or regions of interest are investigated. For in vivo studies, millimetric or sub-millimetric microcoils can be deployed in tissues to access regions of interest located at a certain depth. In this study, the implementation and application of a tissue-implantable NMR microcoil with a detection volume of 850 nL is described. The RF magnetic field generated by the microcoil was evaluated using a finite element method simulation and experimentally determined by high spatial resolution MRI acquisitions. The performance of the microcoil in terms of spectral resolution and limit of detection was measured at 7 T in vitro and in vivo in rodent brains. These performances were compared with those of a conventional external detection coil. Proton MR spectra were acquired in the cortex of rat brain. The concentrations of main metabolites were quantified and compared with reference values from the literature. In vitro and in vivo results obtained with the implantable microcoil showed a gain in sensitivity greater than 50 compared with detection using an external coil. In vivo proton spectra of diagnostic value were obtained from brain regions of a few hundred nanoliters. The similarities between spectra obtained with the implanted microcoil and those obtained with the external NMR coil highlight the minimally invasive nature of the coil implantation procedure. These implantable microcoils represent new tools for probing tissue metabolism in very small healthy or diseased regions using MRS.


Assuntos
Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/instrumentação , Prótons , Animais , Análise de Elementos Finitos , Masculino , Ratos Wistar , Fatores de Tempo
3.
Metabolites ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803055

RESUMO

The aim of this study was to evaluate the potential of a miniaturized implantable nuclear magnetic resonance (NMR) coil to acquire in vivo proton NMR spectra in sub-microliter regions of interest and to obtain metabolic information using magnetic resonance spectroscopy (MRS) in these small volumes. For this purpose, the NMR microcoils were implanted in the right cortex of healthy rats and in C6 glioma-bearing rats. The dimensions of the microcoil were 450 micrometers wide and 3 mm long. The MRS acquisitions were performed at 7 Tesla using volume coil for RF excitation and microcoil for signal reception. The detection volume of the microcoil was measured equal to 450 nL. A gain in sensitivity equal to 76 was found in favor of implanted microcoil as compared to external surface coil. Nine resonances from metabolites were assigned in the spectra acquired in healthy rats (n = 5) and in glioma-bearing rat (n = 1). The differences in relative amplitude of choline, lactate and creatine resonances observed in glioma-bearing animal were in agreement with published findings on this tumor model. In conclusion, the designed implantable microcoil is suitable for in vivo MRS and can be used for probing the metabolism in localized and very small regions of interest in a tumor.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa