Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(34)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552261

RESUMO

The CsSnBr3photodetectors are fabricated by thermal evaporation and 75 °Cin situannealing, and the effect ofin situannealing on the morphology, structure, exciton dynamics and photoresponse of thermally evaporated CsSnBr3films are investigated. Especially, temperature dependent steady-state photoluminescence (PL) and transient PL decaying have been analyzed in details for understanding the exciton dynamics. Meanwhile, effect of annealing on the activation energy for trap sites (Ea), exciton binding energy (Eb), activation energy for interfacial trapped carriers (ΔE), trap densities and carriers mobilities are studied and the annealed (A-CsSnBr3) reveals obviously lowerEband trap density together with notably higher carrier mobility than those of the unannealed (UA-CsSnBr3). Temperature dependence of the integrated PL intensity can be ascribed to the combining effect of the exciton dissociation, exciton quenching through trap sites and thermal activation of trapped carriers. The temperature dependent transient PL decaying analysis indicates that the PL decaying mechanism at low and high temperature is totally different from that in intermediate temperature range, in which combing effect of free exciton and localized state exciton decaying prevail. The beneficial effects of thein situannealing on the photoresponse performance of the CsSnBr3films can be demonstrated by the remarkable enhancement of the optimal responsivity (R) afterin situannealing which increases from less than 1 A W-1to 1350 A W-1as well as dramatically improved noise equivalent power, specific detectivityD* and Gain (G).

2.
Materials (Basel) ; 17(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203302

RESUMO

In this study, Poly(vinyl alcohol)/cellulose nanofiber (PVA/CNF) hydrogels have been successfully prepared using γ-ray irradiation, annealing, and rehydration processes. In addition, the effects of CNF content and annealing methods on the hydrogel properties, including gel fraction, micromorphology, crystallinity, swelling behavior, and tensile and friction properties, are investigated. Consequently, the results show that at an absorbed dose of 30 kGy, the increase in CNF content increases the gel fraction, tensile strength, and elongation at break of irradiated PVA/CNF hydrogels, but decreases the water absorption. In addition, the cross-linking density of the PVA/CNF hydrogels is significantly increased at an annealing temperature of 80 °C, which leads to the transition of the cross-sectional micromorphology from porous networks to smooth planes. For the PVA/CNF hydrogel with a CNF content of 0.6%, the crystallinity increases from 19.9% to 25.8% after tensile annealing of 30% compared to the original composite hydrogel. The tensile strength is substantially increased from 65.5 kPa to 21.2 MPa, and the modulus of elasticity reaches 4.2 MPa. Furthermore, it shows an extremely low coefficient of friction (0.075), which suggests that it has the potential to be applied as a material for artificial joint cartilage.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446475

RESUMO

In this work, we developed pre-grown annealing to form ß2 reconstruction sites among ß or α (2 × 4) reconstruction phase to promote nucleation for high-density, size/wafer-uniform, photoluminescence (PL)-optimal InAs quantum dot (QD) growth on a large GaAs wafer. Using this, the QD density reached 580 (860) µm-2 at a room-temperature (T) spectral FWHM of 34 (41) meV at the wafer center (and surrounding) (high-rate low-T growth). The smallest FWHM reached 23.6 (24.9) meV at a density of 190 (260) µm-2 (low-rate high-T). The mediate rate formed uniform QDs in the traditional ß phase, at a density of 320 (400) µm-2 and a spectral FWHM of 28 (34) meV, while size-diverse QDs formed in ß2 at a spectral FWHM of 92 (68) meV and a density of 370 (440) µm-2. From atomic-force-microscope QD height distribution and T-dependent PL spectroscopy, it is found that compared to the dense QDs grown in ß phase (mediate rate, 320 µm-2) with the most large dots (240 µm-2), the dense QDs grown in ß2 phase (580 µm-2) show many small dots with inter-dot coupling in favor of unsaturated filling and high injection to large dots for PL. The controllable annealing (T, duration) forms ß2 or ß2-mixed α or ß phase in favor of a wafer-uniform dot island and the faster T change enables optimal T for QD growth.

4.
J Phys Condens Matter ; 34(15)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35078169

RESUMO

The effect ofin situannealing is investigated in Gd0.1Ca0.9MnO3(GCMO) thin films in oxygen and vacuum atmospheres. We show that the reduction of oxygen content in GCMO lattice by vacuum annealing induced more oxygen complex vacancies in both subsurface and interface regions and larger grain domains when compared with the pristine one. Consequently, the double exchange interaction is suppressed and the metallic-ferromagnetic state below Curie temperature turned into spin-glass insulating state. In contrast, the magnetic and resistivity measurements show that the oxygen treatment increases ferromagnetic phase volume, resulting in greater magnetization (MS) and improved magnetoresistivity properties below Curie temperature by improving the double exchange interaction. The threshold field to observe the training effect is decreased in oxygen treated film. In addition, the positron annihilation spectroscopy analysis exhibits fewer open volume defects in the subsurface region for oxygen treated film when compared with the pristine sample. These results unambiguously demonstrate that the oxygen treated film with significant spin memory and greater magnetoresistance can be a potential candidate for the future memristor applications.

5.
Methods Mol Biol ; 2127: 283-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112329

RESUMO

Lipoteichoic acids (LTA) are ubiquitous cell wall components of Gram-positive bacteria. In Staphylococcus aureus LTA are composed of a polymer with 1,3-linked glycerol phosphate repeating units anchored to the plasma membrane. The anchor molecule is a lipid-linked disaccharide (anchor-LLD) synthesized at the cytoplasmic leaflet of the membrane. The anchor lipid becomes accessible at the outer leaflet of the membrane after the flippase LtaA catalyzes translocation. Recently we have elucidated the structure of LtaA using vapor diffusion X-ray crystallography and in situ annealing. We were able to obtain LtaA crystals after optimization of purification protocols that led to stabilization of LtaA isolated in detergent micelles. Here we report a protocol that describes the purification, stabilization, crystallization, and data collection strategies carried out to determine the structure of LtaA. We highlight key points that can be used to determine crystal structures of other membrane proteins.


Assuntos
Bioquímica/métodos , Proteínas de Transporte , Lipopolissacarídeos/metabolismo , Proteínas de Membrana , Renaturação Proteica , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Fenômenos Bioquímicos , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Cristalização , Cristalografia por Raios X , Detergentes/química , Detergentes/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Micelas , Estabilidade Proteica , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
6.
Beilstein J Nanotechnol ; 9: 890-899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600150

RESUMO

In this work, we investigate the effect of thermal treatment on CeO2 films fabricated by using atomic layer deposition (ALD) on titanium nitride (TiN) or on silicon (Si) substrates. In particular, we report on the structural, chemical and morphological properties of 25 nm thick ceria oxide with particular attention to the interface with the substrate. The annealing treatments have been performed in situ during the acquisition of X-Ray diffraction patterns to monitor the structural changes in the film. We find that ceria film is thermally stable up to annealing temperatures of 900 °C required for the complete crystallization. When ceria is deposited on TiN, the temperature has to be limited to 600 °C due to the thermal instability of the underlying TiN substrate with a broadening of the interface, while there are no changes detected inside the CeO2 films. As-deposited CeO2 films show a cubic fluorite polycrystalline structure with texturing. Further, after annealing at 900 °C an increase of grain dimensions and an enhanced preferential (200) orientation are evidenced. These findings are a strong indication that the texturing is an intrinsic property of the system more than a metastable condition due to the ALD deposition process. This result is interpreted in the light of the contributions of different energy components (surface energy and elastic modulus) which act dependently on the substrate properties, such as its nature and structure.

7.
Ultramicroscopy ; 176: 218-232, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28011114

RESUMO

In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L10 ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500°C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700°C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5min at 700°C produced complete single-domain L10 order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L10 order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases.

8.
Nanoscale Res Lett ; 12(1): 503, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28836186

RESUMO

In this work, organic field-effect transistors (OFETs) with a bottom gate top contact structure were fabricated by using a spray-coating method, and the influence of in situ annealing treatment on the OFET performance was investigated. Compared to the conventional post-annealing method, the field-effect mobility of OFET with 60 °C in situ annealing treatment was enhanced nearly four times from 0.056 to 0.191 cm2/Vs. The surface morphologies and the crystallization of TIPS-pentacene films were characterized by optical microscope, atomic force microscope, and X-ray diffraction. We found that the increased mobility was mainly attributed to the improved crystallization and highly ordered TIPS-pentacene molecules.

9.
Nanoscale Res Lett ; 12(1): 532, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916974

RESUMO

High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In2Se3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

10.
Ultramicroscopy ; 137: 55-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321382

RESUMO

Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa