Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(27)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38574465

RESUMO

The morphology and size control of anisotropic nanocrystals are critical for tuning shape-dependent physicochemical properties. Although the anisotropic dissolution process is considered to be an effective means to precisely control the size and morphology of nanocrystals, the anisotropic dissolution mechanism remains poorly understood. Here, usingin situliquid cell transmission electron microscopy, we investigate the anisotropic etching dissolution behaviors of polyvinylpyrrolidone (PVP)-stabilized Ag nanorods in NaCl solution. Results show that etching dissolution occurs only in the longitudinal direction of the nanorod at low chloride concentration (0.2 mM), whereas at high chloride concentration (1 M), the lateral and longitudinal directions of the nanorods are dissolved. First-principles calculations demonstrate that PVP is selectively adsorbed on the {100} crystal plane of silver nanorods, making the tips of nanorods the only reaction sites in the anisotropic etching process. When the chemical potential difference of the Cl-concentration is higher than the diffusion barrier (0.196 eV) of Cl-in the PVP molecule, Cl-penetrates the PVP molecular layer of {100} facets on the side of the Ag nanorods. These findings provide an in-depth insight into the anisotropic etching mechanisms and lay foundations for the controlled preparation and rational design of nanostructures.

2.
Nano Lett ; 23(16): 7319-7326, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535017

RESUMO

Reactive oxygen species (ROS) widely participate in a variety of chemical reactions in biological and chemical applications. However, due to the extremely short lifetime of most ROS, conventional ROS-detecting techniques cannot show real-time dynamic changes of ROS-driven chemical reactions and identify the actual role of individual reactive species in these reactions. Herein, using in situ liquid cell TEM complemented by ex situ experiments, we directly visualize ROS-driven rapid etching of Prussian bule (PB) in real time and identify the dominant reactive species in etching processes. The results reveal that highly oxidative •OH is the dominant reactive radical in ROS-driven rapid chemical etching and hollow mesoporous PB nanoparticles can be synthesized on a minute-level time scale via •OH-dominated rapid etching. This work provides insight into ROS-related oxidation, which can continuously improve our understanding of ROS chemistry and make ROS more widely applicable in advanced chemical etching.

3.
Small ; 16(14): e1906435, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108429

RESUMO

Special surface plays a crucial role in nature as well as in industry. Here, the surface morphology evolution of ZnO during wet etching is studied by in situ liquid cell transmission electron microscopy and ex situ wet chemical etching. Many hillocks are observed on the (000 1 ¯ ) O-terminated surface of ZnO nano/micro belts during in situ etching. Nanoparticles on the apex of the hillocks are observed to be essential for the formation of the hillocks, providing direct experimental evidence of the micromasking mechanism. The surfaces of the hillocks are identified to be {01 1 ¯ 3 ¯ } crystal facets, which is different from the known fact that {01 1 ¯ 1 ¯ } crystal facets appear on the (000 1 ¯ ) O-terminated surface of ZnO after wet chemical etching. O2 plasma treatment is found to be the key factor for the appearance of {01 1 ¯ 3 ¯ } instead of {01 1 ¯ 1 ¯ } crystal facets after etching for both ZnO nano/micro belts and bulk materials. The synergistic effect of acidic etching and O-rich surface caused by O2 plasma treatment is proposed to be the cause of the appearance of {01 1 ¯ 3 ¯ } crystal facets. This method can be extended to control the surface morphology of other materials during wet chemical etching.

4.
Ultramicroscopy ; 231: 113271, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33879369

RESUMO

Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia Eletrônica de Transmissão
5.
ACS Nano ; 12(12): 12778-12787, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30422615

RESUMO

Superlattice structures formed by nanoparticle (NP) self-assembly have attracted increasing attention due to their potential as a class of nanomaterials with enhanced physicochemical properties tailored by the assembly structure. However, many key questions remain regarding the correlation between the dynamics of individual NPs and emerging superlattice patterns. Here we investigated the self-assembly of gold NPs by employing in situ transmission electron microscopy equipped with direct detection camera capabilities, which enabled us to track the rapid motion of individual nanoparticles in real time. By calculating the contributions of Brownian, van der Waals, hydrodynamic, and steric hindrance forces, we obtained a quantitative evaluation of the competitive interactions that drive the assembly process. Such competition between forces over various separations is critical for the kinetics of cluster growth, leading to the superlattice formation. Brownian motion resulted in the formation of small-sized clusters, whose growth dynamics was characterized as reaction-limited aggregation. Subsequently, at relative short-range particle separations, van der Waals force overrode the Brownian force and dominantly drove the assembly process. When the particles were in close proximity, a delicate balance between van der Waals and steric hindrance forces led to an unexpected dynamic nature of the assembled superlattice. Our study provides a fundamental understanding of coupling energetics and dynamics of NPs involved in the assembly process, enabling the control and design of the structure of nanoparticle superlattices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa