Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2322107121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857396

RESUMO

The photocatalytic CO2-to-CH4 conversion involves multiple consecutive proton-electron coupling transfer processes. Achieving high CH4 selectivity with satisfactory conversion efficiency remains challenging since the inefficient proton and electron delivery path results in sluggish proton-electron transfer kinetics. Herein, we propose the fabrication of atomically adjacent anion-cation vacancy as paired redox active sites that could maximally promote the proton- and electron-donating efficiency to simultaneously enhance the oxidation and reduction half-reactions, achieving higher photocatalytic CO2 reduction activity and CH4 selectivity. Taking TiO2 as a photocatalyst prototype, the operando electron paramagnetic resonance spectra, quasi in situ X-ray photoelectron spectroscopy measurements, and high-angle annular dark-field-scanning transmission electron microscopy image analysis prove that the VTi on TiO2 as initial sites can induce electron redistribution and facilitate the escape of the adjacent oxygen atom, thereby triggering the dynamic creation of atomically adjacent dual-vacancy sites during photocatalytic reactions. The dual-vacancy sites not only promote the proton- and electron-donating efficiency for CO2 activation and protonation but also modulate the coordination modes of surface-bound intermediate species, thus converting the endoergic protonation step to an exoergic reaction process and steering the CO2 reduction pathway toward CH4 production. As a result, these in situ created dual active sites enable nearly 100% CH4 selectivity and evolution rate of 19.4 µmol g-1 h-1, about 80 times higher than that of pristine TiO2. Thus, these insights into vacancy dynamics and structure-function relationship are valuable to atomic understanding and catalyst design for achieving highly selective catalysis.

2.
Nano Lett ; 24(4): 1231-1237, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251914

RESUMO

Ferroelectricity, especially the Si-compatible type recently observed in hafnia-based materials, is technologically useful for modern memory and logic applications, but it is challenging to differentiate intrinsic ferroelectric polarization from the polar phase and oxygen vacancy. Here, we report electrically controllable ferroelectricity in a Hf0.5Zr0.5O2-based heterostructure with Sr-doped LaMnO3, a mixed ionic-electronic conductor, as an electrode. Electrically reversible extraction and insertion of an oxygen vacancy into Hf0.5Zr0.5O2 are macroscopically characterized and atomically imaged in situ. Utilizing this reversible process, we achieved multilevel polarization states modulated by the electric field. Our study demonstrates the usefulness of the mixed conductor to repair, create, manipulate, and utilize advanced ferroelectric functionality. Furthermore, the programmed ferroelectric heterostructures with Si-compatible doped hafnia are desirable for the development of future ferroelectric electronics.

3.
Small ; 20(36): e2401674, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39077956

RESUMO

Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.

4.
Small ; : e2405008, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075971

RESUMO

In light of the intensifying global energy crisis and the mounting demand for environmental protection, it is of vital importance to develop advanced hydrogen energy conversion systems. Electrolysis cells for hydrogen production and fuel cell devices for hydrogen utilization are indispensable in hydrogen energy conversion. As one of the electrolysis cells, water splitting involves two electrochemical reactions, hydrogen evolution reaction and oxygen evolution reaction. And oxygen reduction reaction coupled with hydrogen oxidation reaction, represent the core electrocatalytic reactions in fuel cell devices. However, the inherent complexity and the lack of a clear understanding of the structure-performance relationship of these electrocatalytic reactions, have posed significant challenges to the advancement of research in this field. In this work, the recent development in revealing the mechanism of electrocatalytic reactions in hydrogen energy conversion systems is reviewed, including in situ characterization and theoretical calculation. First, the working principles and applications of operando measurements in unveiling the reaction mechanism are systematically introduced. Then the application of theoretical calculations in the design of catalysts and the investigation of the reaction mechanism are discussed. Furthermore, the challenges and opportunities are also summarized and discussed for paving the development of hydrogen energy conversion systems.

5.
Small ; 20(29): e2311289, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349036

RESUMO

Hydrogen evolution reaction (HER) in neutral or alkaline electrolytes is appealing for sustainable hydrogen production driven by water splitting, but generally suffers from unsatisfied catalytic activities at high current densities owing to extra kinetic energy barriers required to generate protons through water dissociation. In response, here, a competitive Ni3N/Co3N/CoP electrocatalyst with multifunctional interfacial sites and multilevel interfaces, in which Ni3N/CoP performs as active sites to boost initial water dissociation and Co3N/CoP accelerates subsequent hydrogen adsorption process as confirmed by density functional theory calculations and in situ X-ray photoelectron spectroscopy analysis, is reported. This hybrid catalyst possesses extraordinary HER activity in base, featured by extremely low overpotentials of 115 and 142 mV to afford 500 and 1000 mA cm-2, respectively, outperforming most ever-reported metal phosphides-based catalysts. This catalyst presents an ultrahigh current density of 3545 mA cm-2 by a factor of 4.96 relative to noble Pt/C catalysts (715 mA cm-2) at 0.2 V. Assembled with Fe(PO3)2/Ni2P anode, industrial-level current densities of 500/1000 mA cm-2 at ultralow cell voltages of 1.62/1.66 V for overall water electrolysis with outstanding long-term stability are actualized. More interestingly, this hybrid catalyst also performs well in acidic, neutral freshwater, and seawater requiring relatively low overpotentials of 140, 290, and 331 mV to reach 500 mA cm-2. Particularly, this catalyst can withstand electrochemical corrosion without obvious activity decay at the industrial-level current densities for over 100 h in base. This work provides a cornerstone for the construction of advanced catalysts operated in different pH environments.

6.
Small ; : e2406862, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308284

RESUMO

Interfacial stability is one of the critical challenges in all-solid-state Li metal batteries. Multiple processes such as solid electrolyte (SE) decomposition and lithium dendrite growth take place at the solid interfaces during cycling, leading to the overall cell failure. To deconvolute these complex processes, in situ characterization is of paramount importance to elucidate the interfacial evolution on the SE upon Li plating/stripping. Herein, an all-solid-state asymmetric in situ cell is developed that allows the direct visualization of the highly localized Li plating/stripping processes under the optical microscope. Moreover, this cell configuration enables reliable post-mortem chemical and morphological analysis of the intact SE/Li interface. Using combined scanning electron microscopy and energy-dispersive X-ray spectroscopy, the study reveals that the evolution of the Li argyrodite interface is strongly influenced by the current density, particularly in terms of chemical distribution and Li plating morphology. More specifically, the solid interface is LiCl-rich with the formation of Li cubes at low current densities, while high currents result in more uniform elemental distribution and filament morphology. These findings elucidate the dynamic evolution mechanism at solid interfaces and offer valuable guidance for developing stable solid interfaces in all-solid-state Li metal batteries.

7.
Environ Sci Technol ; 58(32): 14078-14087, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093060

RESUMO

In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.


Assuntos
Minerais , Minerais/química , Recuperação e Remediação Ambiental , Biodegradação Ambiental
8.
Environ Sci Technol ; 58(17): 7653-7661, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635861

RESUMO

The removal and conversion of nitrate (NO3-) from wastewater has become an important environmental and health topic. The NO3- can be reduced to nontoxic nitrogen (N2) for environmental remediation or ammonia (NH3) for recovery, in which the tailoring of the selectivity is greatly challenging. Here, by construction of the CuOx@TiO2 photocatalyst, the NO3- conversion efficiency is enhanced to ∼100%. Moreover, the precise regulation of selectivity to NH3 (∼100%) or N2 (92.67%) is accomplished by the synergy of cooperative redox reactions. It is identified that the selectivity of the NO3- photoreduction is determined by the combination of different oxidative reactions. The key roles of intermediates and reactive radicals are revealed by comprehensive in situ characterizations, providing direct evidence for the regulated selectivity of the NO3- photoreduction. Different active radicals are produced by the interaction of oxidative reactants and light-generated holes. Specifically, the introduction of CH3CHO as the oxidative reactant results in the generation of formate radicals, which drives selective NO3- reduction into N2 for its remediation. The alkyl radicals, contributed to by the (CH2OH)2 oxidation, facilitate the deep reduction of NO3- to NH3 for its upcycling. This work provides a technological basis for radical-directed NO3- reduction for its purification and resource recovery.


Assuntos
Amônia , Nitratos , Oxirredução , Amônia/química , Catálise , Águas Residuárias/química
9.
Macromol Rapid Commun ; : e2400627, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311512

RESUMO

Förster resonance energy transfer (FRET) is an established tool for measuring distances between two molecules (donor and acceptor) on the nanometer scale. In the field of polymer science, the use of FRET to measure polymer end-to-end distances (Ree) often requires complex synthetic steps to label the chain ends with the FRET pair. This work reports an anthracene-functionalized chain-transfer agent for reversible addition-fragmentation chain-transfer (RAFT) polymerization, enabling the synthesized chains to be directly end-labeled with a donor and acceptor without the need for any post-polymerization functionalization. Noteworthily, this FRET method allows for chain conformation measurements of low molecular weight oligomers in situ, without any work-up steps. Using FRET to directly measure the average Ree of the oligomer chains during polymerization, the chain growth of methyl methacrylate, styrene, and methyl acrylate is investigated as a function of reaction time, including determining their degree of polymerization (DP). It is found that DP results from FRET are consistent with other established measurement methods, such as nuclear magnetic resonance (NMR) spectroscopy. Altogether, this work presents a broadly applicable and straightforward method to in situ characterize Ree of low molecular weight oligomers and their DP during reaction.

10.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676011

RESUMO

With the in-depth study of solid-state batteries (SSBs), various in situ and ex situ characterization technologies have been widely used to study them. The performance and reliability of SSBs are limited by the formation and evolution of lithium dendrites at the interfaces between solid electrodes and solid electrolytes. We propose a new method based on optical coherence tomography (OCT) for in situ characterization of the internal state of solid-state batteries. OCT is a low-loss, high-resolution, non-invasive imaging technique that can provide real-time monitoring of cross-sectional images of internal structures of SSBs. The morphology, growth, and evolution of lithium dendrites at different stages of cycling under various conditions can be visualized and quantified by OCT. Furthermore, we validate and correlate the OCT results with scanning electron microscopy (SEM) and XPS, proving the accuracy and effectiveness of the OCT characterization method. We reveal the interfacial phenomena and challenges in SSBs and demonstrate the feasibility and advantages of OCT as a powerful tool for in situ and operando imaging of battery interfaces. This study provides new insights into the mechanisms and factors that affect SSB performance, safety, and lifetime, and suggests possible solutions for improvement and application in the field of applied energy.

11.
Nano Lett ; 23(23): 11360-11367, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38010863

RESUMO

The crystal growth kinetics is crucial for the controllable preparation and performance modulation of metal nanocrystals (NCs). However, the study of growth mechanisms is significantly limited by characterization techniques, and it is still challenging to in situ capture the growth process. Real-time and real-space imaging techniques at the atomic scale can promote the understanding of microdynamics for NC growth. Herein, the growth of Pd NCs on monolayer MoS2 under different atmospheres was in situ studied by environmental transmission electron microscopy. Introducing carbon monoxide can modulate the diffusion of Pd monomers, resulting in the epitaxial growth of Pd NCs with a uniform orientation. The electron energy loss spectroscopy and theoretical calculations showed that the CO adsorption assured the specific exposed facets and good uniformity of Pd NCs. The insight into the gas-solid interface interaction and the microscopic growth mechanism of NCs may shed light on the precise synthesis of NCs on two-dimensional (2D) materials.

12.
Mater Struct ; 57(4): 56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601013

RESUMO

The steel-concrete interface (SCI) is known to play a major role in corrosion of steel in concrete, but a fundamental understanding is still lacking. One reason is that concrete's opacity complicates the study of internal processes. Here, we report on the application of bimodal X-ray and neutron microtomography as in-situ imaging techniques to elucidate the mechanism of steel corrosion in concrete. The study demonstrates that the segmentation of the specimen components of relevance-steel, cementitious matrix, aggregates, voids, corrosion products-obtained through bimodal X-ray and neutron imaging is more reliable than that based on the results of each of the two techniques separately. Further, we suggest the combination of tomographic in-situ imaging with ex-situ SEM analysis of targeted sections, selected based on the segmented tomograms. These in-situ and ex-situ characterization techniques were applied to study localized corrosion in a very early stage under laboratory chloride-exposure conditions, using reinforced concrete cores retrieved from a concrete bridge. Several interesting observations were made. First, the acquired images revealed the formation of several corrosion sites close to each other. Second, the morphology of the corrosion pits was relatively shallow. Finally, only about half of the total 31 corrosion initiation spots were in close proximity to interfacial macroscopic air voids, and > 90% of the more than 160 interfacial macroscopic air voids were free from corrosion. The findings have implications for the mechanistic understanding of corrosion of steel in concrete and suggest that multimodal in-situ imaging is a valuable technique for further related studies. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-024-02337-7.

13.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141606

RESUMO

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

14.
Angew Chem Int Ed Engl ; 63(2): e202310623, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37820079

RESUMO

Many metal coordination compounds catalyze CO2 electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure-reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X-ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc-catalyzed CO2 reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi-electron CO2 reduction. CO, the key intermediate in the CO2 -to-methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2 for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza-N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X-ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non-centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co-CO adduct during the catalysis.

15.
Angew Chem Int Ed Engl ; 63(16): e202314796, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391058

RESUMO

Zinc-air batteries (ZABs) have attracted considerable attention for their high energy density, safety, low noise, and eco-friendliness. However, the capacity of mechanically rechargeable ZABs was limited by the cumbersome procedure for replacing the zinc anode, while electrically rechargeable ZABs suffer from issues including low depth of discharge, zinc dendrite and dead zinc formation, and sluggish oxygen evolution reaction, etc. To address these issues, we report a hybrid redox-mediated zinc-air fuel cell (HRM-ZAFC) utilizing 7,8-dihydroxyphenazine-2-sulfonic acid (DHPS) as the anolyte redox mediator, which shifts the zinc oxidation reaction from the electrode surface to a separate fuel tank. This approach decouples fuel feeding and electricity generation, providing greater operation flexibility and scalability for large-scale power generation applications. The DHPS-mediated ZAFC exhibited a superior peak power density of 0.51 W/cm2 and a continuous discharge capacity of 48.82 Ah with ZnO as the discharge product in the tank, highlighting its potential for power generation.

16.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38441399

RESUMO

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

17.
Small ; 19(48): e2303763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507834

RESUMO

Lithium-ion batteries (LIBs) are very popular electrochemical energy-storage devices. However, their applications in extreme environments are hindered because their low- and high-temperature electrochemical performance is currently unsatisfactory. In order to build all-climate LIBs, it is highly desirable to fully understand the underlying temperature effects on electrode materials. Here, based on a novel porous-microspherical yttrium niobate (Y0.5 Nb24.5 O62 ) model material, this work demonstrates that the operation temperature plays vital roles in electrolyte decomposition on electrode-material surfaces, electrochemical kinetics, and crystal-structure evolution. When the operation temperature increases, the reaction between the electrolyte and the electrode material become more intensive, causing the formation of thicker solid electrolyte interface (SEI) films, which decreases the initial Coulombic efficiency. Meanwhile, the electrochemical kinetics becomes faster, leading to the larger reversible capacity, higher rate capability, and more suitable working potential (i.e., lower working potential for anodes and higher working potential for cathodes). Additionally, the maximum unit-cell-volume change becomes larger, resulting in poorer cyclic stability. The insight gains here can provide a universal guide for the exploration of all-climate electrode materials and their modification methods.

18.
Small ; 19(41): e2303296, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37294167

RESUMO

Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the CN• or CC• radicals generated through the conversion of nitrile intermediates in the pyrolysis process. This greatly enhances the rate capability (192.8 mAh g-1 at 5.0 A g-1 ) and ultra-long cycle stability (233.3 mAh g-1 after 2000 cycles at 0.5 A g-1 ). In situ Raman spectroscopy, ex situ X-ray diffraction and X-ray photoelectron spectroscopy analysis in combination with comprehensive electrochemical characterizations, reveal that the interlayer insertion coordinated quasi-metallic sodium storage in the low potential plateau region and adsorption storage in the high potential sloping region. The first-principles density functional theory calculations further demonstrate strong coordination effect on nitrogen defect sites to capture sodium, especially with pyrrolic N, uncovering the formation mechanism of quasi-metallic bond in the sodium storage. This work provides new insights into the sodium storage mechanism of high-performance carbonaceous materials, and offers new opportunities for better design of hard carbon anode.

19.
Environ Sci Technol ; 57(32): 12127-12134, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531586

RESUMO

Although ammonia (NH3) synthesis efficiency from the NO reduction reaction (NORR) is significantly promoted in recent years, one should note that NO is one of the major air pollutants in the flue gas. The limited NO conversion ratio is still the key challenge for the sustainable development of the NORR route, which potentially contributes more to contaminant emissions rather than its upcycling. Herein, we provide a simple but effective approach for continuous NO reduction into NH3, promoted by coexisting SO2 poison as a gift in the flue gas. It is significant to discover that SO2 plays a decisive role in elevating the capacity of NO absorption and reduction. A unique redox pair of SO2-NO is constructed, which contributes to the exceptionally high conversion ratio for both NO (97.59 ± 1.42%) and SO2 (99.24 ± 0.49%) in a continuous flow. The ultrahigh selectivity for both NO-to-NH3 upcycling (97.14 ± 0.55%) and SO2-to-SO42- purification (92.44 ± 0.71%) is achieved synchronously, demonstrating strong practicability for the value-added conversion of air contaminants. The molecular mechanism is revealed by comprehensive in situ technologies to identify the essential contribution of SO2 to NO upcycling. Besides, realistic practicality is realized by the efficient product recovery and resistance ability against various poisoning effects. The proposed strategy in this work not only achieves a milestone efficiency for NH3 synthesis from the NORR but also raises great concerns about contaminant resourcing in realistic conditions.


Assuntos
Poluentes Atmosféricos , Venenos , Amônia , Dióxido de Enxofre , Poluentes Atmosféricos/análise , Oxirredução , Catálise
20.
Environ Sci Technol ; 57(43): 16532-16540, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37853668

RESUMO

The comprehensive understanding of contaminant interfacial behavior strongly depends on the in situ characterization technique, which is still a great challenge. In this study, we constructed a device integrated with open-circuit potentialand attenuated total reflectance Fourier transform infrared (OCP-ATR-FTIR) spectroscopy to simultaneously monitor the electrochemical and infrared spectral information on the interfacial reaction for the process analysis, taking the competitive adsorption of hexavalent chromium (Cr(VI)) and oxalate on hematite nanocubes (HNC) as an example. The synchronous OCP and infrared results revealed that Cr(VI) interacted with HNC via bidentate binuclear inner-sphere coordination, accompanied by electron transfer from HNC to Cr(VI), while oxalate was adsorbed on HNC through bidentate mononuclear side-on inner-sphere coordination with electron transfer from HNC to oxalate, and also outer-sphere coordination with negative charge accumulation. When oxalate was added to HNC with preadsorbed Cr(VI), oxalate would occupy the inner-sphere adsorption sites and thus cause the detaching of preadsorbed Cr(VI) from HNC. This study provides a promising in situ characterization technique for real-time interfacial reaction monitoring and also sheds light on the competitive adsorption mechanism of oxalate and Cr(VI) on the mineral surface.


Assuntos
Oxalatos , Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromo/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa