Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954171

RESUMO

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Assuntos
Administração Intranasal , Epilepsia , Géis , Mucosa Nasal , Triterpenos , Animais , Administração Intranasal/métodos , Epilepsia/tratamento farmacológico , Géis/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Masculino , Triterpenos/administração & dosagem , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/química , Temperatura , Saponinas/administração & dosagem , Saponinas/química , Saponinas/farmacologia , Saponinas/farmacocinética , Química Farmacêutica/métodos , Disponibilidade Biológica , Ratos , Poloxâmero/química , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química
2.
Assay Drug Dev Technol ; 21(1): 3-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576871

RESUMO

Drug absorption is improved by the intranasal route's wide surface area and avoidance of first-pass metabolism. For the treatment of central nervous system diseases such as migraine, intranasal administration delivers the medication to the brain. The study's purpose was to develop an in situ nasal hydrogel that contained liposomes that were loaded with sumatriptan succinate (SS). A thin-film hydration approach was used to create liposomes, and a 32 factorial design was used to optimize them. The optimized liposomes had a spherical shape, a 171.31 nm particle size, a high drug encapsulation efficiency of 83.54%, and an 8-h drug release of 86.11%. To achieve in situ gel formation, SS-loaded liposomes were added to the liquid gelling system of poloxamer-407, poloxamer-188, and sodium alginate. The final product was tested for mucoadhesive strength, viscosity, drug content, gelation temperature, and gelation time. Following intranasal delivery, in vivo pharmacokinetic investigations showed a significant therapeutic concentration of the medication in the brain with a Cmax value of 167 ± 78 ng/mL and an area under the curve value of 502 ± 63 ng/min·mL. For SS-loaded liposomal thermosensitive nasal hydrogel, significantly higher values of the nose-to-brain targeting parameters, that is, drug targeting index (2.61) and nose-to-brain drug direct transport (57.01%), confirmed drug targeting to the brain through the nasal route. Liposomes containing thermosensitive in situ hydrogel demonstrated potential for intranasal administration of SS.


Assuntos
Lipossomos , Sumatriptana , Sumatriptana/farmacocinética , Hidrogéis/metabolismo , Poloxâmero/metabolismo , Encéfalo/metabolismo
3.
Pharmaceutics ; 13(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206967

RESUMO

A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated ß-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.

4.
Pharm Nanotechnol ; 6(1): 69-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29380709

RESUMO

BACKGROUND: Buspirone Hydrochloride is an anxiolytic agent and serotonin receptor agonist belonging to azaspirodecanedione class of compounds used in the treatment of anxiety disorders. It has short half-life (2-3h) and low oral bioavailability (4%) due to extensive first pass metabolism. OBJECTIVE: The nasal mucosa has several advantages viz., large surface area, porous endothelial membrane, high blood flow, avoidance of first-pass metabolism and ready accessibility that lead to faster and higher drug absorption. Keeping these facts in mind, the objective of the present study was to develop Buspirone hydrochloride loaded niosomal in-situ nasal gel. METHODS: Buspirone hydrochloride niosomal in situ nasal gel was formulated, optimized and evaluated with the objective to deliver drug to the brain via intranasal route. Niosomes were prepared by thin film evaporation method and optimized using32 factorial design. Niosomes were characterized for particle size, zeta potential, entrapment efficiency and in vitro drug release. Buspirone hydrochloride loaded niosomes were further incorporated into Carbopol 934P and HPMC K4M liquid gelling system for the formation of in situ gel. The resultant solution was assessed for various parameters, viz., gelling time, gelling capacity, viscosity at pH 5 and pH 6. RESULTS: The vesicle size of all niosomal suspension batches ranges between 168.3 -310.5 nm. The vesicle size of optimized niosomal suspension F5 batch is 181.9±0.36nm. For F5 batch, the value of zeta potential was found to be -15.4 mV; this specifies that prepared niosomes have sufficient surface charge to prevent aggregation of the vesicles. % entrapment efficiency for all batches was found in the range 72.44±0.18% to 87.7±0.66%. The cumulative percent release of niosomal suspension ranges from 66.34±0.39 to 84.26±0.26%. Ex vivo permeation of Buspirone hydrochloride through the sheep nasal mucosa showed that 83.49% w/w drug permeated after 8 h. The SEM and Zeta potential studies showed the formation of stable vesicles. CONCLUSION: Thus, the application of niosomes proved the potential for intranasal delivery of Buspirone hydrochloride over the conventional gel formulations. Overall intranasal drug delivery for Buspirone hydrochloride has been successfully developed.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Encéfalo/metabolismo , Buspirona/química , Portadores de Fármacos/química , Lipossomos/química , Agonistas do Receptor de Serotonina/química , Administração Intranasal , Animais , Buspirona/administração & dosagem , Química Farmacêutica , Colesterol/química , Liberação Controlada de Fármacos , Géis , Humanos , Concentração de Íons de Hidrogênio , Mucosa Nasal/metabolismo , Tamanho da Partícula , Permeabilidade , Agonistas do Receptor de Serotonina/administração & dosagem , Ovinos , Viscosidade
5.
Res Pharm Sci ; 10(6): 466-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779266

RESUMO

The objective of the present work was to formulate and evaluate mucoadhesive in situ nasal gels of loratadine. This drug delivery system may overcome the first-pass metabolism and subsequently improve the bioavailability of the drug. A total of 16 formulations of in situ nasal gels were prepared using different polymeric ratios of hydroxypropyl methylcellulose (HPMC K-100) and xanthan gum. All formulations had a clear appearance in the sol form, with gelling temperature of the nasal gels ranging between 33.1 ± 0.43 and 34.8 ± 0.82 °C. The gelling time of all the formulations varied from 4.0 ± 0.21 to 11.3 ± 0.22 s; the drug content was >95%. The pH of the formulations ranged between 5.6 ± 0.004 and 6.0 ± 0.003, i.e. no mucosal irritation is expected as the pH was in the acceptable range. Mucoadhesive strength was adequate (3010.89 ± 1.21-6678.89 ± 0.45 dyne/cm(2)) to provide prolonged adhesion. In vitro drug release studies showed that the prepared formulations could release the drug for up to 10 h with all of them following Higuchi kinetics. The accelerated stability studies indicated that the gels were stable over the six months test period. The DSC and XRD analysis revealed that there was no drug-polymer interaction. From these findings it can be concluded that in situ nasal gels may be potential drug delivery systems for loratadine to overcome first-pass metabolism and thereby to improve the bioavailability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa