Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39205122

RESUMO

Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning. However, most methods use only one dataset at a time, which may not be sufficient for dealing with a multi-source retrieving problem in certain scenarios. From this perspective, this paper proposes an original approach for feature extraction through multiple datasets based on IVA to improve the classification of EEG-based motor imagery movements. The IVA components were used as features to classify imagined movements using consolidated classifiers (support vector machines and K-nearest neighbors) and deep classifiers (EEGNet and EEGInception). The results show an interesting performance concerning the clustering of MI-based BCI patients, and the proposed method reached an average accuracy of 86.7%.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Movimento , Máquina de Vetores de Suporte , Humanos , Eletroencefalografia/métodos , Movimento/fisiologia , Imaginação/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos
2.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617090

RESUMO

With the advent of the era of big data information, artificial intelligence (AI) methods have become extremely promising and attractive. It has become extremely important to extract useful signals by decomposing various mixed signals through blind source separation (BSS). BSS has been proven to have prominent applications in multichannel audio processing. For multichannel speech signals, independent component analysis (ICA) requires a certain statistical independence of source signals and other conditions to allow blind separation. independent vector analysis (IVA) is an extension of ICA for the simultaneous separation of multiple parallel mixed signals. IVA solves the problem of arrangement ambiguity caused by independent component analysis by exploiting the dependencies between source signal components and plays a crucial role in dealing with the problem of convolutional blind signal separation. So far, many researchers have made great contributions to the improvement of this algorithm by adopting different methods to optimize the update rules of the algorithm, accelerate the convergence speed of the algorithm, enhance the separation performance of the algorithm, and adapt to different application scenarios. This meaningful and attractive research work prompted us to conduct a comprehensive survey of this field. This paper briefly reviews the basic principles of the BSS problem, ICA, and IVA and focuses on the existing IVA-based optimization update rule techniques. Additionally, the experimental results show that the AuxIVA-IPA method has the best performance in the deterministic environment, followed by AuxIVA-IP2, and the OverIVA-IP2 has the best performance in the overdetermined environment. The performance of the IVA-NG method is not very optimistic in all environments.


Assuntos
Inteligência Artificial , Processamento de Sinais Assistido por Computador , Algoritmos
3.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300060

RESUMO

Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Distribuição Normal
4.
Neuroimage ; 216: 116872, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353485

RESUMO

The extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis. IVA-CS leverages the strength of IVA in identification of a complete subspace structure across multiple datasets along with an efficient solution that uses only second-order statistics. We propose a subset analysis approach within IVA-CS to mitigate issues in estimation in IVA due to high dimensionality, both in terms of components estimated and the number of datasets. We introduce a scheme to determine a desirable size for the subset that is high enough to exploit the dependence across datasets and is not affected by the high dimensionality issue. We demonstrate the success of IVA-CS in extracting complex subset structures and apply the method to analysis of functional magnetic resonance imaging data from 179 subjects and show that it successfully identifies shared and complementary brain patterns from patients with schizophrenia (SZ) and healthy controls group. Two components with linked resting-state networks are identified to be unique to the SZ group providing evidence of functional dysconnectivity. IVA-CS also identifies subgroups of SZs that show significant differences in terms of their brain networks and clinical symptoms.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Simulação por Computador , Conectoma/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem
5.
Neuroimage ; 173: 498-508, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518568

RESUMO

Development and aging are associated with functional changes in the brain across the lifespan. These changes manifest in a variety of spatial and temporal features of resting state functional MRI (rs-fMRI) but have seldom been explored exhaustively. We present a comprehensive study assessing age-related changes in spatial and temporal features of blind-source separated components identified by independent vector analysis (IVA) in a cross-sectional lifespan sample (ages 6-85 years). We show that while large-scale network configurations remain consistent throughout the lifespan, changes persist in both local and global organization of these networks. We show that the spatial extent of the majority of functional networks exhibits linear decreases and both positive and negative quadratic trajectories across the lifespan. Network connectivity revealed nuanced patterns of linear and quadratic relationships with age, primarily in higher order cognitive networks. We also show divergent age-related patterns across the frequency spectrum in lower and higher frequencies. Taken together, these results point to the presence of sophisticated patterns of age-related changes that have previously not been considered collectively. We suggest that established patterns of lifespan changes in rs-fMRI features may be driven by changes in the spectral composition of BOLD signals.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Longevidade , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Brain Topogr ; 31(1): 117-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936596

RESUMO

Steady state visual evoked potentials (SSVEPs) have been identified as an effective solution for brain computer interface (BCI) systems as well as for neurocognitive investigations. SSVEPs can be observed in the scalp-based recordings of electroencephalogram signals, and are one component buried amongst the normal brain signals and complex noise. We present a novel method for enhancing and improving detection of SSVEPs by leveraging the rich joint blind source separation framework using independent vector analysis (IVA). IVA exploits the diversity within each dataset while preserving dependence across all the datasets. This approach is shown to enhance the detection of SSVEP signals across a range of frequencies and subjects for BCI systems. Furthermore, we show that IVA enables improved topographic mapping of the SSVEP propagation providing a promising new tool for neuroscience and neurocognitive research.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Detecção de Sinal Psicológico/fisiologia , Algoritmos , Interfaces Cérebro-Computador , Interpretação Estatística de Dados , Lateralidade Funcional , Voluntários Saudáveis , Humanos
7.
Sensors (Basel) ; 17(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956854

RESUMO

In this paper, we study how to improve the performance of moving target classification by using an acoustic signal enhancement method based on independent vector analysis (IVA) in the unattended ground sensor (UGS) system. Inspired by the IVA algorithm, we propose an improved IVA method based on a microphone array for acoustic signal enhancement in the wild, which adopts a particular multivariate generalized Gaussian distribution as the source prior, an adaptive variable step strategy for the learning algorithm and discrete cosine transform (DCT) to convert the time domain observed signals to the frequency domain. We term the proposed method as DCT-G-IVA. Moreover, we design a target classification system using the improved IVA method for signal enhancement in the UGS system. Different experiments are conducted to evaluate the proposed method for acoustic signal enhancement by comparing with the baseline methods in our classification system under different wild environments. The experimental results validate the superiority of the DCT-G-IVA enhancement method in the classification system for moving targets in the presence of dynamic wind noise.

8.
Neuroimage ; 90: 196-206, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24418507

RESUMO

Recent work on both task-induced and resting-state functional magnetic resonance imaging (fMRI) data suggests that functional connectivity may fluctuate, rather than being stationary during an entire scan. Most dynamic studies are based on second-order statistics between fMRI time series or time courses derived from blind source separation, e.g., independent component analysis (ICA), to investigate changes of temporal interactions among brain regions. However, fluctuations related to spatial components over time are of interest as well. In this paper, we examine higher-order statistical dependence between pairs of spatial components, which we define as spatial functional network connectivity (sFNC), and changes of sFNC across a resting-state scan. We extract time-varying components from healthy controls and patients with schizophrenia to represent brain networks using independent vector analysis (IVA), which is an extension of ICA to multiple data sets and enables one to capture spatial variations. Based on mutual information among IVA components, we perform statistical analysis and Markov modeling to quantify the changes in spatial connectivity. Our experimental results suggest significantly more fluctuations in patient group and show that patients with schizophrenia have more variable patterns of spatial concordance primarily between the frontoparietal, cerebellar and temporal lobe regions. This study extends upon earlier studies showing temporal connectivity differences in similar areas on average by providing evidence that the dynamic spatial interplay between these regions is also impacted by schizophrenia.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Cadeias de Markov , Pessoa de Meia-Idade
9.
PeerJ Comput Sci ; 9: e1189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346557

RESUMO

Electrocardiogram (ECG) signals are normally contaminated by various physiological and nonphysiological artifacts. Among these artifacts baseline wandering, electrode movement and muscle artifacts are particularly difficult to remove. Independent component analysis (ICA) is a well-known technique of blind source separation (BSS) and is extensively used in literature for ECG artifact elimination. In this article, the independent vector analysis (IVA) is used for artifact removal in the ECG data. This technique takes advantage of both the canonical correlation analysis (CCA) and the ICA due to the utilization of second-order and high order statistics for un-mixing of the recorded mixed data. The utilization of recorded signals along with their delayed versions makes the IVA-based technique more practical. The proposed technique is evaluated on real and simulated ECG signals and it shows that the proposed technique outperforms the CCA and ICA because it removes the artifacts while altering the ECG signals minimally.

10.
Front Neurosci ; 16: 861402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546891

RESUMO

Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time, and voxels, revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change.

11.
J Neurosci Methods ; 366: 109411, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793852

RESUMO

BACKGROUND: A trend in the development of resting-state fMRI (rsfMRI) data analysis is the drive towards more data-driven methods. Group Independent Component Analysis (GICA) is a well-proven data-driven method for performing fMRI group analysis, though not without issues, especially the back-reconstruction from group-level independent components to individual-level components. Group information-guided ICA (GIG-ICA) and Independent Vector Analysis (IVA) are recent extensions of GICA that were shown to outperform GICA in the identification of unique rsfMRI biomarkers in psychiatric conditions. NEW METHOD: In this work, GICA, GIG-ICA, and IVA-GL analysis methods were applied to rsfMRI data acquired from 9 mice under different doses of medetomidine (0.1 - 0.3 mg/kg/h) in the before and after forepaw stimulation, and their performance was compared to determine whether GIG-ICA and IVA-GL outperform GICA in identifying robust and reliable resting-state networks in the rodent brain. RESULTS: Our results showed IVA-GL method had certain desirable performance characteristics over the other two methods under minimal data pre-processing and data-driven assumptions in application to analysis of mouse resting-state functional MRI. COMPARISON WITH EXISTING METHODS: IVA-GL provides better stability towards detecting group differences at different model order assumptions and performed better at separating data well-defined and functionally reasonable components in mouse resting-state fMRI. At higher model order and more likely functional component assumptions, GIG-ICA and IVA-GL were found to have greater sensitivity at detecting functional connectivity changes due to physiological challenges compared to GICA. CONCLUSIONS: This study indicates that IVA-GL yields better detection of resting-state networks in the rodent brain compared to other ICA methods and a promising data-driven analysis method for rodent rsfMRI.


Assuntos
Imageamento por Ressonância Magnética , Roedores , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos
12.
J Neurosci Methods ; 350: 109039, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33370561

RESUMO

BACKGROUND: Dynamic functional network connectivity (dFNC) summarizes associations among time-varying brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to investigate spatial variability and the interaction between temporal and spatial variability. NEW METHOD: We propose to use an adaptive variant of constrained independent vector analysis to simultaneously capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in dFNC analysis---determining the number of transient states. We apply our methods to resting-state functional magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs). RESULTS: The results show spatial variability provides more features discriminative between groups than temporal variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involvement in HCs, suggesting a more efficient cognitive control system relative to SZs. COMPARISON WITH EXISTING METHODS: Spatial variability is more informative than temporal variability. The proposed goal-driven scheme determines the optimal number of states in a more interpretable way by making use of discriminative features. CONCLUSION: GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC and reveals unique biomedical patterns in SZs.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem
13.
Front Neurosci ; 13: 1006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607848

RESUMO

Dynamic functional network connectivity (dFNC) analysis is a widely-used to study associations between dynamic functional correlations and cognitive abilities. Traditional methods analyze time-varying association of different spatial networks while assuming that the spatial network itself is stationary. However, there has been very little work focused on voxelwise spatial variability. Exploiting the variability across both the temporal and spatial domains provide a more promising direction to obtain reliable dynamic functional patterns. However, methods for extracting time-varying spatio-temporal patterns from large-scale functional magnetic resonance imaging (fMRI) data present some challenges, such as degradation in performance with respect to increase in size of the data, estimation of the number of dynamic components, and the potential sensitivity of the resulting dFNCs to selection of the networks. In this work, we implement subsequent extraction of exemplars and dynamics using a constrained independent vector analysis, a data-driven method that efficiently estimates spatial and temporal dynamics from large-scale resting-state fMRI data. We explore the benefits of analyzing spatial dFNC (sdFNC) patterns over temporal dFNC (tdFNC) patterns in the context of differentiating healthy controls and patients with schizophrenia. Our results indicate that for resting-state fMRI data, sdFNC patterns were able to better classify patients and controls, and yield more distinguishing features compared with tdFNC patterns. We also estimate structured patterns of connectivity/states using sdFNC patterns, an area that has not been studied so far, and observe that sdFNC was able to successfully capture distinct information from healthy controls and patients with schizophrenia. In addition, sdFNC patterns were also able to identify functional patterns that associate with signs of paranoia and abnormalities in the patients group. We also observe that patients with schizophrenia tend to switch to or stay in a state corresponding to a hyperconnected brain network.

14.
J Neurosci Methods ; 281: 49-63, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28214528

RESUMO

BACKGROUND: Complex-valued fMRI data can provide additional insights beyond magnitude-only data. However, independent vector analysis (IVA), which has exhibited great potential for group analysis of magnitude-only fMRI data, has rarely been applied to complex-valued fMRI data. The main challenges in this application include the extremely noisy nature and large variability of the source component vector (SCV) distribution. NEW METHOD: To address these challenges, we propose an adaptive fixed-point IVA algorithm for analyzing multiple-subject complex-valued fMRI data. We exploited a multivariate generalized Gaussian distribution (MGGD)- based nonlinear function to match varying SCV distributions in which the MGGD shape parameter was estimated using maximum likelihood estimation. To achieve our de-noising goal, we updated the MGGD-based nonlinearity in the dominant SCV subspace, and employed a post-IVA de-noising strategy based on phase information in the IVA estimates. We also incorporated the pseudo-covariance matrix of fMRI data into the algorithm to emphasize the noncircularity of complex-valued fMRI sources. RESULTS: Results from simulated and experimental fMRI data demonstrated the efficacy of our method. COMPARISON WITH EXISTING METHOD(S): Our approach exhibited significant improvements over typical complex-valued IVA algorithms, especially during higher noise levels and larger spatial and temporal changes. As expected, the proposed complex-valued IVA algorithm detected more contiguous and reasonable activations than the magnitude-only method for task-related (393%) and default mode (301%) spatial maps. CONCLUSIONS: The proposed approach is suitable for decomposing multi-subject complex-valued fMRI data, and has great potential for capturing additional subject variability.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Percepção Auditiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Simulação por Computador , Dedos/fisiologia , Humanos , Funções Verossimilhança , Modelos Neurológicos , Atividade Motora/fisiologia , Análise Multivariada , Dinâmica não Linear , Descanso
15.
Front Neurosci ; 11: 267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579940

RESUMO

Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guided independent component analysis (GIG-ICA) as a variant of GICA has been proposed to improve the accuracy of the subject-specific ICs estimation by optimizing their independence. Independent vector analysis (IVA) is another method which optimizes the independence among each subject's components and the dependence among corresponding components of different subjects. Both methods are promising in neuroimaging study and showed a better performance than the traditional GICA. However, the difference between IVA and GIG-ICA has not been well studied. A detailed comparison between them is demanded to provide guidance for functional network analyses. In this work, we employed multiple simulations to evaluate the performances of the two approaches in estimating subject-specific components and time courses under conditions of different data quality and quantity, varied number of sources generated and inaccurate number of components used in computation, as well as the presence of spatially subject-unique sources. We also compared the two methods using healthy subjects' test-retest resting-state fMRI data in terms of spatial functional networks and functional network connectivity (FNC). Results from simulations support that GIG-ICA showed better recovery accuracy of both components and time courses than IVA for those subject-common sources, and IVA outperformed GIG-ICA in component and time course estimation for the subject-unique sources. Results from real fMRI data suggest that GIG-ICA resulted in more reliable spatial functional networks and yielded higher and more robust modularity property of FNC, compared to IVA. Taken together, GIG-ICA is appropriate for estimating networks which are consistent across subjects, while IVA is able to estimate networks with great inter-subject variability or subject-unique property.

16.
Front Syst Neurosci ; 8: 106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018704

RESUMO

Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performance limits of GICA and IVA has not been investigated. Recent interest in resting state fMRI data with potentially higher degree of subject variability makes the evaluation of the above techniques important. In this paper we compare component estimation accuracies of GICA and an improved version of IVA using simulated fMRI datasets. We systematically change the degree of inter-subject spatial variability of components and evaluate estimation accuracy over all spatial maps (SMs) and time courses (TCs) of the decomposition. Our results indicate the following: (1) at low levels of SM variability or when just one SM is varied, both GICA and IVA perform well, (2) at higher levels of SM variability or when more than one SMs are varied, IVA continues to perform well but GICA yields SM estimates that are composites of other SMs with errors in TCs, (3) both GICA and IVA remove spatial correlations of overlapping SMs and introduce artificial correlations in their TCs, (4) if number of SMs is over estimated, IVA continues to perform well but GICA introduces artifacts in the varying and extra SMs with artificial correlations in the TCs of extra components, and (5) in the absence or presence of SMs unique to one subject, GICA produces errors in TCs and IVA estimates are accurate. In summary, our simulation experiments (both simplistic and realistic) and our holistic analyses approach indicate that IVA produces results that are closer to ground truth and thereby better preserves subject variability. The improved version of IVA is now packaged into the GIFT toolbox (http://mialab.mrn.org/software/gift).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa