Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539776

RESUMO

The Boltzmann kinetic equation for dilute granular suspensions under simple (or uniform) shear flow (USF) is considered to determine the non-Newtonian transport properties of the system. In contrast to previous attempts based on a coarse-grained description, our suspension model accounts for the real collisions between grains and particles of the surrounding molecular gas. The latter is modeled as a bath (or thermostat) of elastic hard spheres at a given temperature. Two independent but complementary approaches are followed to reach exact expressions for the rheological properties. First, the Boltzmann equation for the so-called inelastic Maxwell models (IMM) is considered. The fact that the collision rate of IMM is independent of the relative velocity of the colliding spheres allows us to exactly compute the collisional moments of the Boltzmann operator without the knowledge of the distribution function. Thanks to this property, the transport properties of the sheared granular suspension can be exactly determined. As a second approach, a Bhatnagar-Gross-Krook (BGK)-type kinetic model adapted to granular suspensions is solved to compute the velocity moments and the velocity distribution function of the system. The theoretical results (which are given in terms of the coefficient of restitution, the reduced shear rate, the reduced background temperature, and the diameter and mass ratios) show, in general, a good agreement with the approximate analytical results derived for inelastic hard spheres (IHS) by means of Grad's moment method and with computer simulations performed in the Brownian limiting case (m/mg→∞, where mg and m are the masses of the particles of the molecular and granular gases, respectively). In addition, as expected, the IMM and BGK results show that the temperature and non-Newtonian viscosity exhibit an S shape in a plane of stress-strain rate (discontinuous shear thickening, DST). The DST effect becomes more pronounced as the mass ratio m/mg increases.

2.
Entropy (Basel) ; 25(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36832589

RESUMO

The Boltzmann equation for d-dimensional inelastic Maxwell models is considered to determine the collisional moments of the second, third and fourth degree in a granular binary mixture. These collisional moments are exactly evaluated in terms of the velocity moments of the distribution function of each species when diffusion is absent (mass flux of each species vanishes). The corresponding associated eigenvalues as well as cross coefficients are obtained as functions of the coefficients of normal restitution and the parameters of the mixture (masses, diameters and composition). The results are applied to the analysis of the time evolution of the moments (scaled with a thermal speed) in two different nonequilibrium situations: the homogeneous cooling state (HCS) and the uniform (or simple) shear flow (USF) state. In the case of the HCS, in contrast to what happens for simple granular gases, it is demonstrated that the third and fourth degree moments could diverge in time for given values of the parameters of the system. An exhaustive study on the influence of the parameter space of the mixture on the time behavior of these moments is carried out. Then, the time evolution of the second- and third-degree velocity moments in the USF is studied in the tracer limit (namely, when the concentration of one of the species is negligible). As expected, while the second-degree moments are always convergent, the third-degree moments of the tracer species can be also divergent in the long time limit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa