RESUMO
Extracellular vesicles (EVs) are diverse, nanoscale membrane vesicles released by cells into the circulation. As an emerging class of circulating biomarkers, EVs contain a trove of molecular information and play important roles in mediating intercellular communication. These EV molecular cargoes are differentially organized in the vesicles; they could be inherited from the parent cells or bound to the EV membrane through surface interactions. While the inherited constituents could serve as cell surrogate biomarkers, extravesicular association could reflect structural states of the bound molecules, revealing distinct subpopulations with different biophysical and/or biochemical properties. Despite the clinical potential of EVs and their diverse contents, conventional sensing technologies have limited compatibility to reveal nanoscale EV features. Complementary analytical platforms are being developed to address these technical challenges and expand the biomedical applications of EVs, to establish novel correlations and empower new diagnostics. This article provides a perspective on recent developments in sensor technologies to profile the diverse contents-different molecular types, quantities, and organizational states-in extracellular vesicles.