Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Trends Immunol ; 43(8): 617-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817699

RESUMO

Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.


Assuntos
Infecções por HIV , HIV-1 , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Provírus/genética , Integração Viral
2.
Mol Ther ; 31(12): 3424-3440, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37705244

RESUMO

Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.


Assuntos
Doença Granulomatosa Crônica , Síndromes Mielodisplásicas , Humanos , Adulto , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/terapia , NADPH Oxidases/genética , Hematopoiese Clonal , Terapia Genética , Retroviridae/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , NADPH Oxidase 2/genética
3.
BMC Biol ; 21(1): 271, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001496

RESUMO

BACKGROUND: Fraction of functional sequence in the human genome remains a key unresolved question in Biology and the subject of vigorous debate. While a plethora of studies have connected a significant fraction of human DNA to various biochemical processes, the classical definition of function requires evidence of effects on cellular or organismal fitness that such studies do not provide. Although multiple high-throughput reverse genetics screens have been developed to address this issue, they are limited to annotated genomic elements and suffer from non-specific effects, arguing for a strong need to develop additional functional genomics approaches. RESULTS: In this work, we established a high-throughput lentivirus-based insertional mutagenesis strategy as a forward genetics screen tool in aneuploid cells. Application of this approach to human cell lines in multiple phenotypic screens suggested the presence of many yet uncharacterized functional elements in the human genome, represented at least in part by novel exons of known and novel genes. The novel transcripts containing these exons can be massively, up to thousands-fold, induced by specific stresses, and at least some can represent bi-cistronic protein-coding mRNAs. CONCLUSIONS: Altogether, these results argue that many unannotated and non-canonical human transcripts, including those that appear as aberrant splice products, have biological relevance under specific biological conditions.


Assuntos
DNA , Genômica , Humanos , RNA Mensageiro/metabolismo , Éxons , Genômica/métodos , Mutagênese Insercional , Processamento Alternativo
4.
Mol Ther ; 30(8): 2646-2663, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35690906

RESUMO

On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Camundongos , Mutagênese Insercional , Plasmídeos , Transgenes , Integração Viral
5.
Regul Toxicol Pharmacol ; 138: 105332, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592683

RESUMO

A number of adeno-associated virus (AAV)-based gene therapy products have entered clinical development, with a few also reaching marketing approval. However, as our knowledge of them grows from nonclinical and clinical testing, it has become apparent that various actual and theoretical safety issues can arise from their use. This review of 19 Good Laboratory Practice (GLP)-compliant toxicity studies in non-human primates (NHPs) with AAV-based gene therapy products via a variety of different dose routes in the period 2017-2021 showed results ranging from no study findings different from controls, or findings considered to be non-adverse, to actual toxicity, with changes highlighting careful monitoring in the clinic. Similar findings were found from a review of a number of published toxicity studies in NHPs. It was confirmed that studies have a role in evaluating for dorsal root ganglion (DRG) and/or peripheral nerve toxicity, hepatotoxicity, adverse immunogenicity and, to a lesser degree, insertional mutagenesis as well as other potential unacceptable findings such as adverse inflammation for ocular therapy candidates. Overall, it was demonstrated that toxicity (and biodistribution) studies in NHPs are a vital part of the safety assessment of AAV-based gene therapy products prior to clinical entry.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Distribuição Tecidual , Primatas/genética , Terapia Genética/efeitos adversos
6.
Appl Environ Microbiol ; 88(19): e0114922, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36094200

RESUMO

ß-Carotene is a provitamin A precursor and an important antioxidant that is used widely in the aquaculture, food, cosmetic, and pharmaceutical industries. Oleaginous Yarrowia lipolytica has been demonstrated as a competitive producer microorganism for the production of hydrophobic ß-carotene through rational engineering strategies. However, the limited understanding of the complexity of the metabolic network between carotenoid biosynthesis and other cellular processes has hampered further advancement. Genome-scale mutagenesis and high-throughput screening of mutagenesis libraries have been extensively employed in gene mining or in the identification of key targets associated with particular phenotypes. In this study, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-ß-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased ß-carotene significantly. By engineering these targets in a high-ß-carotene production, a strain that produced 9.4 g/L ß-carotene was constructed. Here, we used a flow cytometry approach to improve screening efficiency and eliminate the interference of intermediate metabolites. The targets obtained in this study can be used in studies focusing on metabolic engineering in the future for improving carotenoid production. IMPORTANCE ß-Carotene is a high-value-added product that is widely used in the aquaculture, food, cosmetic, and pharmaceutical industries. In our previous study, Yarrowia lipolytica has been engineered extensively to produce ß-carotene. To further improve its production, high-throughput screening and the identification of new beneficial gene targets are required. Herein, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-ß-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased ß-carotene significantly. By engineering these targets in a high-ß-carotene production, a strain that produced 9.4 g/L ß-carotene was constructed.


Assuntos
Yarrowia , Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Lipídeos , Provitaminas/metabolismo , Esteróis/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , beta Caroteno/metabolismo
7.
FASEB J ; 35(2): e21359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496003

RESUMO

The ability and efficiency of targeted nucleases to perform sequence replacements or insertions into the genome are limited. This limited efficiency for sequence replacements or insertions can be explained by the dependency on DNA repair pathways, the possibility of cellular toxicity, and unwanted activation of proto-oncogenes. The piggyBac (PB) transposase uses a very efficient enzymatic mechanism to integrate DNA fragments into the genome in a random manner. In this study, we fused an RNA-guided catalytically inactive Cas9 (dCas9) to the PB transposase and used dual sgRNAs to localize this molecule to specific genomic targets. We designed and used a promoter/reporter complementation assay to register and recover cells harboring-specific integrations, where only by complementation upon correct genomic integration, the reporter can be activated. Using an RNA-guided piggyBac transposase and dual sgRNAs, we were able to achieve site-directed integrations in the human ROSA26 safe harbor region in 0.32% of cells. These findings show that the methodology used in this study can be used for targeting genomic regions. An application for this finding could be in cancer cells to insert sequences into specific target regions that are intended to be destroyed, or to place promoter cargos behind the tumor suppressor genes to activate them.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Genes Reporter , Células HEK293 , Humanos , Mutagênese Insercional , RNA Guia de Cinetoplastídeos/metabolismo , Transposases/genética , Transposases/metabolismo
8.
Appl Microbiol Biotechnol ; 106(1): 317-327, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34910239

RESUMO

Red yeasts, mainly included in the genera Rhodotorula, Rhodosporidiobolus, and Sporobolomyces, are renowned biocatalysts for the production of a wide range of secondary metabolites of commercial interest, among which lipids, carotenoids, and other isoprenoids. The production of all these compounds is tightly interrelated as they share acetyl-CoA and the mevalonate pathway as common intermediates. Here, T-DNA insertional mutagenesis was applied to the wild type strain C2.5t1 of Rhodotorula mucilaginosa for the isolation of albino mutants with impaired carotenoids biosynthesis. The rationale behind this approach was that a blockage in carotenoid biosynthetic pathway could divert carbon flux toward the production of lipids and/or other molecules deriving from terpenoid precursors. One characterized albino mutant, namely, strain W4, carries a T-DNA insertion in the CAR1 gene coding for phytoene desaturase. When cultured in glycerol-containing medium, W4 strain showed significant decreases in cell density and fatty acids content in respect to the wild type strain. Conversely, it reached significantly higher productions of phytoene, CoQ10, and sterols. These were supported by an increased expression of CAR2 gene that codes for phytoene synthase/lycopene cyclase. Thus, in accordance with the starting hypothesis, the impairment of carotenoids biosynthesis can be explored to pursue the biotechnological exploitation of red yeasts for enhanced production of secondary metabolites with several commercial applications. KEY POINTS: • The production of lipids, carotenoids, and other isoprenoids is tightly interrelated. • CAR1 gene mutation results in the overproduction of phytoene, CoQ10, and sterols. • Albino mutants are promising tools for the production of secondary metabolites.


Assuntos
Arginase , Proteínas Fúngicas , Rhodotorula , Carotenoides , Mutagênese Insercional , Rhodotorula/genética , Esteróis
9.
Mol Ther ; 29(9): 2841-2853, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940155

RESUMO

A primary challenge in lentiviral gene therapy of ß-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVß-shα2, that allows coordinated expression of the therapeutic ßA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in ß-thalassemia. We demonstrate that LVß-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and ßA-T87Q-globin gene expression identical to the parent vector. Compared with the first ßA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVß-shα2 shows 1.7-fold greater potency to improve α/ß ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of ß-thalassemia and provide an improved benefit/risk ratio regardless of the ß-thalassemia genotype.


Assuntos
Vetores Genéticos/administração & dosagem , RNA Interferente Pequeno/genética , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Linhagem Celular , Células Cultivadas , Regulação para Baixo , Células Eritroides/citologia , Células Eritroides/metabolismo , Genótipo , Humanos , Células K562 , Lentivirus/genética , Lentivirus/fisiologia , MicroRNAs/antagonistas & inibidores , Cultura Primária de Células , Carga Viral , Talassemia beta/terapia
10.
Mol Ther ; 29(12): 3383-3397, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174440

RESUMO

Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials.


Assuntos
Terapia Genética , Vetores Genéticos , Animais , Dano ao DNA , Expressão Gênica , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Células-Tronco Hematopoéticas , Humanos , Aprendizado de Máquina , Camundongos , Mutagênese Insercional
11.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897706

RESUMO

Human papillomavirus (HPV) integration within the host genome may contribute to carcinogenesis through various disruptive mechanisms. With next-generation sequencing (NGS), identification of viral and host genomic breakpoints and chimeric sequences are now possible. However, a simple, streamlined bioinformatics workflow has been non-existent until recently. Here, we tested two new, automated workflows in CLC Microbial Genomics, i.e., Viral Hybrid Capture (VHC) Data Analysis and Viral Integration Site (VIS) Identification for software performance and efficiency. The workflows embedded with HPV and human reference genomes were used to analyze a publicly available NGS dataset derived from pre- and cancerous HPV+ cervical cytology of 21 Gabonese women. The VHC and VIS workflow median runtimes were 19 and 7 min per sample, respectively. The VIS dynamic graphical outputs included read mappings, virus-host genomic breakpoints, and virus-host integration circular plots. Key findings, including disrupted and nearby genes, were summarized in an auto-generated report. Overall, the VHC and VIS workflows proved to be a rapid and accurate means of localizing viral-host integration site(s) and identifying disrupted and neighboring human genes. Applying HPV VIS-mapping to pre- or invasive tumors will advance our understanding of viral oncogenesis and facilitate the discovery of prognostic biomarkers and therapeutic targets.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Alphapapillomavirus/genética , DNA Viral/genética , Feminino , Genômica , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Integração Viral/genética , Fluxo de Trabalho
12.
Plant J ; 103(5): 1924-1936, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32410353

RESUMO

Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.


Assuntos
Brachypodium/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Retroelementos/genética , Cromossomos de Plantas/genética , Mutagênese Insercional/métodos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
13.
Metab Eng ; 66: 239-258, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971293

RESUMO

The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.


Assuntos
Microalgas , Estramenópilas , Biocombustíveis , Lipídeos/genética , Microalgas/genética , Mutagênese Insercional , Estramenópilas/genética
14.
Cell Biol Int ; 45(3): 507-517, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31829471

RESUMO

Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp-a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.


Assuntos
Etanol/metabolismo , Fermentação/genética , Genes Fúngicos , Glucose/metabolismo , Mutagênese Insercional/genética , Saccharomycetales/genética , Xilose/metabolismo , Aerobiose , Carbono/farmacologia , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Testes Genéticos , Heme/metabolismo , Mutação/genética , Piruvatos/metabolismo
15.
Plant J ; 98(6): 1106-1119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776165

RESUMO

From a single transgenic line harboring five Tnt1 transposon insertions, we generated a near-saturated insertion population in Medicago truncatula. Using thermal asymmetric interlaced-polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population. FST recovery from 14 Tnt1 lines using the whole-genome sequencing (WGS) and/or Tnt1-capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference of Tnt1 insertions showed that Tnt1 is overall randomly distributed throughout the M. truncatula genome. At the chromosomal level, Tnt1 insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with the GC content. Based on 174 546 filtered FSTs that show exact insertion locations in the M. truncatula genome version 4.0 (Mt4.0), 0.44 Tnt1 insertions occurred per kb, and 19 583 genes contained Tnt1 with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed that Tnt1-inserted genes are significantly enriched in processes associated with 'stress', 'transport', 'signaling' and 'stimulus response'. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583 Tnt1-inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide-binding site-leucine-rich repeat genes harbored at least one Tnt1 insertion, compared with the overall 38% of Tnt1-inserted genes out of 50 894 annotated genes in the genome.


Assuntos
Biologia Computacional , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Medicago truncatula/genética , Mutagênese Insercional , Metilação de DNA , Fenótipo , Plantas Geneticamente Modificadas
16.
Trends Genet ; 33(11): 784-801, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28888423

RESUMO

Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.


Assuntos
Elementos de DNA Transponíveis , Genômica , Modelos Genéticos , Vertebrados/genética , Animais
17.
New Phytol ; 226(2): 306-325, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31334862

RESUMO

With the emergence of high-throughput methods in plant biology, the importance of long-term projects characterized by incremental advances involving multiple laboratories can sometimes be overlooked. Here, I highlight my 40-year effort to isolate and characterize the most common class of mutants encountered in Arabidopsis (Arabidopsis thaliana): those defective in embryo development. I present an updated dataset of 510 EMBRYO-DEFECTIVE (EMB) genes identified throughout the Arabidopsis community; include important details on 2200 emb mutants and 241 pigment-defective embryo (pde) mutants analyzed in my laboratory; provide curated datasets with key features and publication links for each EMB gene identified; revisit past estimates of 500-1000 total EMB genes in Arabidopsis; document 83 double mutant combinations reported to disrupt embryo development; emphasize the importance of following established nomenclature guidelines and acknowledging allele history in research publications; and consider how best to extend community-based curation and screening efforts to approach saturation for this diverse class of mutants in the future. Continued advances in identifying EMB genes and characterizing their loss-of-function mutant alleles are needed to understand genotype-to-phenotype relationships in Arabidopsis on a broad scale, and to document the contributions of large numbers of essential genes to plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Mutação/genética , Fenótipo
18.
Appl Microbiol Biotechnol ; 104(6): 2663-2674, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32020279

RESUMO

Ophiocordyceps sinensis, one of the well-known and precious fungal species in the world, parasitizes soil-dwelling larvae of ghost moths on the Tibetan Plateau. The genetic intractability of this extremely psychrophilic and slow-growing O. sinensis fungus is a major limitation on the molecular study. In this study, an Agrobacterium tumefaciens-mediated genetic transformation (ATMT) system for this fungus was established. ATMT procedure was optimized based on the fungal recipient, Agrobacterium strains, and different co-cultivation conditions. Blastospores were ideal recipients for this system. Acetosyringone (AS) was not essential for the transformation of O. sinensis. Sixty to 100 hygromycin B-resistant transformants per 1 × 106 blastospores were obtained. Southern blot analysis indicated the presence of a random single-copy integration of T-DNA into the O. sinensis genome. The insertional transformants with altered growth characters such as colony, blastospore, and fruiting body production were selected to identify the T-DNA flanking sequences by modified hiTAIL-PCR and FPNI-PCR techniques. Eight genes, including genes for an MFS transporter, a 2-oxoglutarate dehydrogenase, a DNA-directed RNA polymerase III complex subunit Rpc37, a cytochrome oxidase subunit I, a mitochondrial import inner membrane translocase subunit tim54, a cytidine deaminase, a phosphoribosylaminoimidazole carboxylase, and a histone H3-like centromeric protein cse-4 were identified. This ATMT system provides a useful tool for gene discovery and characterization of O. sinensis and contributes to the better understanding of the mysterious life cycle of O. sinensis and the molecular interaction between this fungus and its host insects.


Assuntos
Ascomicetos/genética , DNA Bacteriano/genética , Engenharia Genética/métodos , Transformação Genética , Agrobacterium tumefaciens , Ascomicetos/crescimento & desenvolvimento , Genoma Fúngico
19.
Plant J ; 96(2): 300-315, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003619

RESUMO

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Assuntos
Complexo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogênese Vegetal/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Complexo Mediador/genética , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
20.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899093

RESUMO

Influenza A and B viruses can continuously evade humoral immune responses by developing mutations in the globular head of the hemagglutinin (HA) that prevent antibody binding. However, the influenza B virus HA over time displays less antigenic variation despite being functionally and structurally similar to the influenza A virus HA. To determine if the influenza B virus HA is under constraints that limit its antigenic variation, we performed a transposon screen to compare the mutational tolerance of the currently circulating influenza A virus HAs (H1 and H3 subtypes) and influenza B virus HAs (B/Victoria87 and B/Yamagata88 antigenic lineages). A library of insertional mutants for each HA was generated and deep sequenced after passaging to determine where insertions were tolerated in replicating viruses. The head domains of both viruses tolerated transposon mutagenesis, but the influenza A virus head was more tolerant to insertions than the influenza B virus head domain. Furthermore, all five of the known antigenic sites of the influenza A virus HA were tolerant of 15 nucleotide insertions, while insertions were detected in only two of the four antigenic sites in the influenza B virus head domain. Our analysis demonstrated that the influenza B virus HA is inherently less tolerant of transposon-mediated insertions than the influenza A virus HA. The reduced insertional tolerance of the influenza B virus HA may reveal genetic restrictions resulting in a lower capacity for antigenic evolution.IMPORTANCE Influenza viruses cause seasonal epidemics and result in significant human morbidity and mortality. Influenza viruses persist in the human population through generating mutations in the hemagglutinin head domain that prevent antibody recognition. Despite the similar selective pressures on influenza A and B viruses, influenza A virus displays a higher rate and breadth of antigenic variability than influenza B virus. A transposon mutagenesis screen was used to examine if the reduced antigenic variability of influenza B virus was due to inherent differences in mutational tolerance. This study demonstrates that the influenza A virus head domain and the individual antigenic sites targeted by humoral responses are more tolerant to insertions than those of influenza B virus. This finding sheds light on the genetic factors controlling the antigenic evolution of influenza viruses.


Assuntos
Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Mutagênese Insercional , Mutagênese , Replicação Viral , Análise Mutacional de DNA , Elementos de DNA Transponíveis , Variação Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa