Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vavilovskii Zhurnal Genet Selektsii ; 25(5): 465-471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34595369

RESUMO

The insulin/insulin-like growth factor signaling (IIS) pathway is one of the key elements in an organism's response to unfavourable conditions. The deep homology of this pathway and its evolutionary conservative role in controlling the carbohydrate and lipid metabolism make it possible to use Drosophila melanogaster for studying its functioning. To identify the properties of interaction of two key IIS pathway components under heat stress in D. melanogaster (the forkhead box O transcription factor (dfoxo) and insulin-like peptide 6 (dilp6), which intermediates the dfoxo signal sent from the fat body to the insulin-producing cells of the brain where DILPs1-5 are synthesized), we analysed the expression of the genes dilp6, dfoxo and insulin-like receptor gene (dInR) in females of strains carrying the hypomorphic mutation dilp6 41and hypofunctional mutation foxo BG01018. We found that neither mutation inf luenced dfoxo expression and its uprise under short-term heat stress, but both of them disrupted the stress response of the dilp6 and dInR genes. To reveal the role of identif ied disruptions in metabolism control and feeding behaviour, we analysed the effect of the dilp6 41 and foxo BG01018 mutations on total lipids content and capillary feeding intensity in imago under normal conditions and under short-term heat stress. Both mutations caused an increase in these parameters under normal conditions and prevented decrease in total lipids content following heat stress observed in the control strain. In mutants, feeding intensity was increased under normal conditions; and decreased following short-term heat stress in all studied strains for the f irst 24 h of observation, and in dilp6 41 strain, for 48 h. Thus, we may conclude that dfoxo takes part in regulating the IIS pathway response to heat stress as well as the changes in lipids content caused by heat stress, and this regulation is mediated by dilp6. At the same time, the feeding behaviour of imago might be controlled by dfoxo and dilp6 under normal conditions, but not under heat stress.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa