Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nano Lett ; 24(35): 11059-11066, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186689

RESUMO

The downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material. These porous Au IDE-based symmetric micro-supercapacitors (P-SMSCs) show a remarkable enhancement in charge storage performance, with a 187% increase in areal capacitance at 2.5 mA compared to conventional flat Au IDE-based devices, despite identical active material loading times. Our P-SMSCs achieve an areal capacitance of 60 mF/cm2, a peak areal energy density of 5.44 µWh/cm2, and an areal power of 2778 µW/cm2, surpassing most reported SMSCs. This study advances high-performance SMSCs by developing highly porous microscale planar current collectors, optimizing microelectrode use, and maximizing capacity within a compact footprint.

2.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066041

RESUMO

Non-invasive continuous health monitoring has become feasible with the advancement of biosensors. While monitoring certain biomarkers such as heart rate or skin temperature are now at a certain maturity, monitoring molecular biomarkers is still challenging. Progress has been shown in sampling, measurement, and interpretation of data toward non-invasive molecular sensors that can be integrated into daily wearable items. Toward this goal, this paper explores the potential of embroidered interdigitated transducer (IDT)-based sensors for non-invasive, continuous monitoring of human biomarkers, particularly glucose levels, in human sweat. The study employs innovative embroidery techniques to create flexible fabric-based sensors with gold-coated IDTs. In controlled experiments, we have shown the variation of glucose concentration in water can be wirelessly detected by tracking the resonant frequency of the embroidered sensors. The current sensors operate at 1.8 GHz to 2 GHz and respond to the change in glucose concentration with a sensitivity of 0.17 MHz/(mg/dL). The embroidered IDT-based sensors with wireless sensing will be a new measurement modality for molecular wearable sensors. The establishment of a wireless sensing mechanism for embroidered IDT-based sensors will be followed by an investigation of sweat for molecular detection. This will require adding functionalities for sampling and interpretation of acquired data. We envisage the embroidered IDT-based sensors offer a unique approach for seamless integration into clothing, paving the way for personalised, continuous health data capture.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Eletrodos , Suor , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Biomarcadores/análise , Tecnologia sem Fio/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Suor/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Glucose/análise
3.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339574

RESUMO

This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 µg/mL. The sensitivity of the device for a 0.5 µg/mL analyte concentration was measured to be 695 Ω· mL/µg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.


Assuntos
Poluição do Ar , Técnicas Biossensoriais , Espectroscopia Dielétrica , Impedância Elétrica
4.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276335

RESUMO

The article presents the design concept of a surface acoustic wave (SAW)-based lab-on-a-chip sensor with multifrequency and multidirectional sensitivity. The conventional SAW sensors use delay lines that suffer from multiple signal losses such as insertion, reflection, transmission losses, etc. Most delay lines are designed to transmit and receive continuous signal at a fixed frequency. Thus, the delay lines are limited to only a few features, like frequency shift and change in wave velocity, during the signal analysis. These facts lead to limited sensitivity and a lack of opportunity to utilize the multi-directional variability of the sensing platform at different frequencies. Motivated by these facts, a guided wave sensing platform that utilizes simultaneous tone burst-based excitation in multiple directions is proposed in this article. The design incorporates a five-count tone burst signal for the omnidirectional actuation. This helps the acquisition of sensitive long part of the coda wave (CW) signals from multiple directions, which is hypothesized to enhance sensitivity through improved signal analysis. In this article, the design methodology and implementation of unique tone burst interdigitated electrodes (TB-IDT) are presented. Sensing using TB-IDT enables accessing multiple frequencies simultaneously. This results in a wider frequency spectrum and allows better scope for the detection of different target analytes. The novel design process utilized guided wave analysis of the substrate, and selective directional focused interdigitated electrodes (F-IDT) were implemented. The article demonstrates computational simulation along with experimental results with validation of multifrequency and multidirectional sensing capability.

5.
Nanotechnology ; 35(6)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918025

RESUMO

In this study, the fabrication of an ultrahigh selective NH3gas sensor based on RGO/WO3nanocomposite has been proposed. The hydrothermal method was employed to synthesize the RGO/WO3nanocomposite. The formation of RGO/WO3nanocomposite and the elemental composition, structure and morphology of the as-synthesized materials were confirmed through an array of analytical techniques, including XRD, Raman, FT-IR, XPS and TEM. For gas sensing applications, pure RGO and RGO/WO3have effectively spin-coated onto the interdigitated electrodes (IDE's) based on fluorine doped tin oxide (FTO) respectively, and their sensitivity towards NH3was tested. Gas sensing characteristics of prepared materials were analyzed at room temperature (25 °C) under different relative humidity (RH) levels. The developed RGO/WO3sensor was subjected to different NH3concentrations, demonstrating a high sensing response of 89% towards 500 ppm NH3under 11%-97%-11% RH conditions. Notably, the sensor exhibited rapid response and recovery times with an average response time of 92 s and recovery time of 26 s when exposed to 500 ppm NH3under the specified RH conditions. To gauge the material selectivity, the prepared nanocomposite was exposed to a range of volatile organic compounds and the results showcased the sensor's remarkable selectivity and sensitivity specifically toward NH3vapor. This superior performance can be attributed to the abundant active sites and the excellent electron transport properties inherent to the RGO component. Importantly, the RGO/WO3sensor displayed high reproducibility and consistent responses, with minimal degradation (1.98% degradation) over 30 d at 11%-97%-11% RH. Furthermore, we examined the sensor's response with varying levels of relative humidity to assess its potential for real-world applications. The sensor exhibited extremely low power consumption, outperforming a commercially available metal oxide sensor while operating at ambient temperature. The robust performance of RGO/WO3coupled with low power requirements and ambient temperature operation, positions it as a promising candidate for next-generation gas sensing technologies.

6.
Nanotechnology ; 34(30)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37105139

RESUMO

In the quest to create effective sensors that operate at room temperature, consume less power and maintain their stability over time for detecting toxic gases in the environment, molybdenum disulfide (MoS2) and MoS2-based hybrids have emerged as potent materials. In this context, the current work describes the fabrication of Au-MoS2hybrid gas sensor fabricated on gold interdigitated electrodes (GIEs) for sensing harmful CO and NH3gases at room temperature. The GIEs-based Au-MoS2hybrid sensors are fabricated by decorating MoS2nanoflowers (MNF) with varying size of Au nanoparticles using an inert gas evaporation technique. It is observed that by varying the size of Au nanoparticles, the crystallinity gets modified, as confirmed by x-ray diffraction and Micro-Raman spectroscopy (µRS). The gas sensing measurements revealed that the best sensing response is found from the Au-MoS2hybrid (with an average particle size of 10 nm). This particular hybrid shows a 79% response to CO exposure and a 69% response to NH3exposure. The measurements are about 3.5 and 5 times higher than the bare MoS2when exposed to CO and NH3at room temperature, respectively. This enhancement in sensing response is attributed to the modified interfacial interaction between the Au nanoparticles and MNF gets improved, which leads to the formation of a Schottky barrier, as confirmed using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis. This enables the development of efficient gas sensors that respond quickly to changes in the gas around them.

7.
Nanotechnology ; 35(6)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918017

RESUMO

Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix. Further, to bind these nanofibers with the graphene electrode surface, we have used the green synthesized silver nanoparticles (AgNPs) with banana flower stem fluid (BFSF) as a binder solution. AgNPs with BFSF form the conductive porous natural binder layer (CPNBL). It does not allow to increase the resistivity of the deposited material on graphene electrodes and also keeps the nanofibers intact with paper-based SPCIE. The synthesized material of MWCNT-ZnO nanofibers and green synthesized AgNPs with BFSF as a binder were characterized by Ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The amperometric measurements were performed on the proposed SPCIE sensor to detect the glucose sample directly. The innovative paper-based SPCIE glucose sensor exhibits a linear corelation between current measurements and glucose concentration in the range between 45.22µm and 20 mm, with a regression coefficient (R2) of 0.9902 and a lower limit of detection (LoD) of 45.22µm (n= 5). The sensitivity of the developed SPCIE sensor was 2178.57µAmM-1cm-2, and the sensor's response time determined was approximately equal to 18 s. The proposed sensor was also tested for real blood serum sample, and relative standard deviation (RSD) was found equal to 2.95%.

8.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679562

RESUMO

In pipeline production, there is a considerable distance between the moment when the operation principle of a biosensor will be verified in the laboratory until the moment when it can be used in real conditions. This distance is often covered by an optimization and packaging process. This article described the packaging and optimization of a SARS-CoV-2 biosensor, as well as the packaging of its electronic readout circuit. The biosensor was packed with a photosensitive tape, which forms a protective layer and is patterned in a way to form a well in the sensing area. The well is meant to limit the liquid diffusion, thereby reducing the measurement error. Subsequently, a connector between the biosensor and its readout circuit was designed and 3D-printed, ensuring the continuous and easy reading of the biosensor. In the last step, a three-dimensional case was designed and printed, thus protecting the circuit from any damage, and allowing its operation in real conditions.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Eletrodos
9.
Sensors (Basel) ; 23(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050808

RESUMO

In recent years, advancements in microfluidic and sensor technologies have led to the development of new methods for monitoring cell growth both in macro- and micro-systems. In this paper, a microfluidic (MF) platform with a microbioreactor and integrated impedimetric sensor is proposed for cell growth monitoring during the cell cultivation process in a scaled-down simulator. The impedimetric sensor with an interdigitated electrode (IDE) design was realized with inkjet printing and integrated into the custom-made MF platform, i.e., the scaled-down simulator. The proposed method, which was integrated into a simple and rapid fabrication MF system, presents an excellent candidate for the scaled-down analyses of cell growths that can be of use in, e.g., optimization of the cultivated meat bioprocess. When applied to MRC-5 cells as a model of adherent mammalian cells, the proposed sensor was able to precisely detect all phases of cell growth (the lag, exponential, stationary, and dying phases) during a 96-h cultivation period with limited available nutrients. By combining the impedimetric approach with image processing, the platform enables the real-time monitoring of biomasses and advanced control of cell growth progress in microbioreactors and scaled-down simulator systems.


Assuntos
Mamíferos , Microfluídica , Animais , Eletrodos
10.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850423

RESUMO

Observing the curing reaction of epoxy resins is a key to quality assurance in fibre composite production. The evaluation of electrical impedance spectra is an established monitoring method. Such impedance spectra contain the physical effects of dipole relaxation, ionic conduction and electrode polarisation, which shift to lower frequencies as curing progresses. In the early stage of the curing reaction, ionic conductivity and electrode polarisation dominate, and in the later stage of the curing reaction, dipole relaxation dominates. Due to the shift of the effects over several frequency decades, it makes sense to evaluate electrical impedance spectra not exclusively at one frequency but over an entire available frequency spectrum. The measured spectral raw data cannot be easily interpreted by a control algorithm and have to be mapped to simpler key indicators. For this purpose, a frequency-dependent model is proposed to address the aforementioned physical effects. With only five free parameters, measured spectra can be described with a relative error of only 2.3%. The shift of the occurring effects to lower frequencies necessitates switching the key indicator used in the progression of the cure reaction.

11.
Small ; 18(22): e2107659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521934

RESUMO

The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.


Assuntos
Canabidiol , Canabidiol/uso terapêutico , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Nucleotídeos , Física
12.
Macromol Rapid Commun ; 43(17): e2200212, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35318764

RESUMO

Organic electrochemical transistors (OECTs), especially the ones with high transconductance, are highly promising in sensitive detection of chemical and biological species. However, it is still a great challenge to design and fabricate OECTs with very high transconductance. Herein, an OECT with ultrahigh transconductance is reported by introducing ionic liquid and dodecylbenzenesulfonate (DBSA) simultaneously in poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) as the semiconductive channel. Compared with the OECT based on pristine PEDOT:PSS, the OECT based on co-doped PEDOT:PSS demonstrates a significant enhancement of transconductance from 1.85 to 22.7 mS, because of the increase in volumetric capacitance and conductivity. The enhanced transconductance is attributed to the DBSA-facilitated phase separation between the ionic liquid and PEDOT:PSS, which helps to form conductive domains of ionic liquid in PEDOT:PSS matrix, and the partial dispersion of ionic liquid in the PEDOT:PSS phase. Furthermore, by using the interdigitated electrodes as the source and drain electrodes, an ultrahigh transconductance of 180 mS is obtained, which is superior to that of the state-of-the-art OECTs. Because of the ultrahigh transconductance, the obtained OECT demonstrates sensitive detection of hydrogen peroxide and glucose, making it promising in clinical diagnosis, health monitoring, and environmental surveillance.


Assuntos
Líquidos Iônicos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Polímeros/química
13.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214565

RESUMO

Herein, we present the syntheses of a novel coordination polymer (CP) based on the perylene-3,4,9,10-tetracarboxylate (pery) linkers and sodium metal ions. We have chosen sodium metal center with the aim of surmising the effect that the modification of the metal ion may have on the relative humidity (RH) experimental measurements of the material. We confirm the role of the ions in the functionalization of the deposited layer by modifying their selectivity towards moisture content, paving the way to the generation of sensitive and selective chemical sensors.

14.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35161565

RESUMO

Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.

15.
Small ; 17(40): e2103039, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34477315

RESUMO

Flexible and soft bioelectronics display conflicting demands on miniaturization, compliance, and reliability. Here, the authors investigate the design and performance of thin encapsulation multilayers against hermeticity and mechanical integrity. Partially cracked organic/inorganic multilayer coatings are demonstrated to display surprisingly year-long hermetic lifetime under demanding mechanical and environmental loading. The thin hermetic encapsulation is grown in a single process chamber as a continuous multilayer with dyads of atomic layer deposited (ALD) Al2 O3 -TiO2 and chemical vapor deposited Parylene C films with strong interlayer adhesion. Upon tensile loading, tortuous diffusion pathways defined along channel cracks in the ALD oxide films and through tough Parylene films efficiently postpone the hermeticity failure of the partially cracked coating. The authors assessed the coating performance against prolonged exposure to biomimetic physiological conditions using coated magnesium films, platinum interdigitated electrodes, and optoelectronic devices prepared on stretchable substrates. Designed extension of the lifetime preventing direct failures reduces from over 5 years yet tolerates the lifetime of 3 years even with the presence of critical damage, while others will directly fail less than two months at 37 °C. This strategy should accelerate progress on thin hermetic packaging for miniaturized and compliant implantable electronics.


Assuntos
Óxido de Alumínio , Próteses e Implantes , Eletrodos , Eletrônica , Reprodutibilidade dos Testes
16.
Macromol Rapid Commun ; 42(5): e2000560, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33274814

RESUMO

In this contribution, a soft sensor configuration based on silicone foam is developed to measure compressive forces in the range of 50 N with the aim of providing proprioceptive capabilities to conventional robotic manipulators based on hard materials. This then makes them capable of interacting with soft and fragile objects without damage. The concept relies on interdigitated electrodes that are patterned on the backside of the sensor to generate a fringing electric field into a soft compressible polymeric foam. The deformation of the foam causes changes to relative permittivity as the air-filled cells compress. The model in this article shows how the different parameters of the foam, such as air volume fraction, permittivity, and Young's modulus, affect the stiffness and electrical sensitivity of the sensor, and how controlling the porosity of the foam is key to optimizing the sensitivity of the sensor. This sensor is easy to fabricate and does not require compliant electrodes, while exhibiting high sensitivity values of 33% capacitance change for as little as 10 N applied force.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Capacitância Elétrica , Pressão , Silicones
17.
Sensors (Basel) ; 21(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34770592

RESUMO

Non-standard diesel blends can be harmful to the environment and human health. In this context, a simple analytical method to estimate the biodiesel mixture ratio in diesel was developed based on impedance spectroscopy (IS) associated with interdigitated sensors. In this article, four different interdigitated sensors with varied comb spacing (G) were simulated using the COMSOL Multiphysics software. Based on finite element simulations, four interdigitated electrode architectures were manufactured and evaluated. The best geometry was chosen according to theoretical data simulations, and its interdigitated electrodes were manufactured for the compositional evaluation of pseudo-binary biodiesel-diesel mixtures. According to the X-ray powder diffraction technique, the deposition of the conductive layer (Au0) over the surface of the dielectric substrate (SiO2) did not alter its phase composition. In the analysis of AFM and SEM, it was possible to observe irregular edges on the electrodes, possibly related to the manufacturing process of the thin layers and mechanical stability. Another characteristic observed in the AFM images was the height of the step of the gold layer of the sensor. Several cross sections were obtained, and the mean step value was 225.71 ± 0.0032 nm. Although there were differences in the roughness, the whole sensor had nanometric roughness. Based on the finite element method simulation performed, it can be assumed that the geometric parameters more suitable for the manufacturing of the electrode are W = 20 µm, L = 1000 µm, G = 50 µm, and N = 40 digits. The electrical characterization performed by impedance spectroscopy showed that we could differentiate between biodiesel and diesel fuels and their pseudo-binary mixtures in the low-frequency region.


Assuntos
Biocombustíveis , Dióxido de Silício , Eletrodos , Gasolina , Ouro , Humanos
18.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640877

RESUMO

Flexible and biodegradable sensors are advantageous for their versatility in a range of areas from smart packaging to agriculture. In this work, we characterize and compare the performance of interdigitated electrode (IDE) humidity sensors printed on different biodegradable substrates. In these IDE capacitive devices, the substrate acts as the sensing layer. The dielectric constant of the substrate increases as the material absorbs water from the atmosphere. Consequently, the capacitance across the electrodes is a function of environmental relative humidity. Here, the performance of polylactide (PLA), glossy paper, and potato starch as a sensing layer is compared to that of nonbiodegradable polyethylene terephthalate (PET). The capacitance across inkjet-printed silver electrodes is measured in environmental conditions ranging from 15 to 90% relative humidity. The sensitivity, response time, hysteresis, and temperature dependency are compared for the sensors. The relationship between humidity and capacitance across the sensors can be modeled by exponential growth with an R2 value of 0.99, with paper and starch sensors having the highest overall sensitivity. The PET and PLA sensors have response and recovery times under 5 min and limited hysteresis. However, the paper and starch sensors have response and recovery times closer to 20 min, with significant hysteresis around 100%. The PET and starch sensors are temperature independent, while the PLA and paper sensors display thermal drift that increases with temperature.


Assuntos
Prata , Capacitância Elétrica , Eletrodos , Umidade , Temperatura
19.
J Microelectromech Syst ; 29(5): 653-660, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33762802

RESUMO

We have developed a new technology for the realization of composite biosensor systems, capable of measuring electrical and electrophysiological signals from electrogenic cells, using SeedEZ™ 3D cell culture-scaffold material. This represents a paradigm-shift for BioMEMS processing; 'Biology-Microfabrication' versus the standard 'Microfabrication-Biology' approach. An Interdigitated Electrode (IDE) developed on the 3D cell-scaffold was used to successfully monitor acute cardiomyocyte growth and controlled population decline. We have further characterized processability of the 3D scaffold, demonstrated long-term biocompatibility of the scaffold with various cell lines and developed a multifunctional layered biosensor composites (MLBCs) using SeedEZ™ and other biocompatible substrates for future multilayer sensor integration.

20.
Anal Bioanal Chem ; 412(16): 3859-3870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125465

RESUMO

The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule's functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules. Graphical Abstract.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa