Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 254: 119155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754614

RESUMO

Fungi play an important role in the mineralization and humification of refractory organic matter such as lignocellulose during composting. However, limited research on the ecological role of fungi in composting system hindered the development of efficient microbial agents. In this study, six groups of lab-scale composting experiments were conducted to reveal the role of fungal community in composting ecosystems by comparing them with bacterial community. The findings showed that the thermophilic phase was crucial for organic matter degradation and humic acid formation. The Richness index of the fungal community peaked at 1165 during this phase. PCoA analysis revealed a robust thermal stability in the fungal community. Despite temperature fluctuations, the community structure, predominantly governed by Pichia and Candida, remained largely unaltered. The stability of fungal community and the complexity of ecological networks were 1.26 times and 5.15 times higher than those observed in bacterial community, respectively. Fungi-bacteria interdomain interaction markedly enhanced network complexity, contributing to maintain microbial ecological functions. The core fungal species belonging to the family Saccharomycetaceae drove interdomain interaction during thermophilic phase. This study demonstrated the key role of fungi in the composting system, which would provide theoretical guidance for the development of high efficiency composting agents to strengthen the mineralization and humification of organic matter.

2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396917

RESUMO

Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed.


Assuntos
Bicamadas Lipídicas , Lipoxigenases , Animais , Humanos , Coelhos , Conformação Molecular , Ácidos Graxos
3.
J Biol Chem ; 297(3): 101038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343567

RESUMO

Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Prevotella nigrescens/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Prevotella nigrescens/química , Prevotella nigrescens/enzimologia , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1812-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004959

RESUMO

Fas apoptosis inhibitory molecule (FAIM) is a highly conserved anti-apoptotic protein which plays important roles in cells. There are two isoforms of FAIM, of which the short isoform FAIM-S is broadly expressed in all tissues, whereas the long isoform FAIM-L is exclusively expressed in the nervous system. No structure of human FAIM has been reported to date and the detailed molecular mechanisms underlying the anti-apoptotic function of FAIM remain unknown. Here, the crystal structure of the human FAIM-S N-terminal domain (NTD) and the NMR solution structure of the human FAIM-S C-terminal domain (CTD) were determined. The structures revealed that the NTD and CTD adopt a similar protein fold containing eight antiparallel ß-strands which form two sheets. Both structural and biochemical analyses implied that the NTD exists as a dimer and the CTD as a monomer and that they can interact with each other. Several critical residues were identified to be involved in this interaction. Moreover, mutations of these critical residues also interfered in the anti-apoptotic activity of FAIM-S. Thus, the structural and functional data presented here will provide insight into the anti-apoptotic mechanism of FAIM-S.


Assuntos
Apoptose , Receptor fas/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Células HEK293 , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37147085

RESUMO

Mammalian metallothioneins (MTs) are small Cys-rich proteins involved in Zn(II) and Cu(I) homeostasis. They bind seven Zn(II) ions in two distinct ß- and α-domains, forming Zn3Cys9 and Zn4Cys11 clusters, respectively. After six decades of research, their role in cellular buffering of Zn(II) ions has begun to be understood recently. This is because of different affinities of bound ions and the proteins' coexistence in variously Zn(II)-loaded Zn4-7MT species in the cell. To date, it has remained unclear how these mechanisms of action occur and how the affinities are differentiated despite the Zn(S-Cys)4 coordination environment being the same. Here, we dissect the molecular basis of these phenomena by using several MT2 mutants, hybrid protein, and isolated domains. Through a combination of spectroscopic and stability studies, thiol(ate) reactivity, and steered molecular dynamics, we demonstrate that both protein folding and thermodynamics of Zn(II) ion (un)binding significantly differ between isolated domains and the whole protein. Close proximity reduces the degrees of freedom of separated domains, making them less dynamic. It is caused by the formation of intra- and interdomain electrostatic interactions. The energetic consequence of domains connection has a critical impact on the role of MTs in the cellular environment, where they function not only as a zinc sponge but also as a zinc buffering system keeping free Zn(II) in the right concentrations. Any change of that subtle system affects the folding mechanism, zinc site stabilities, and cellular zinc buffer components.


Assuntos
Metalotioneína , Zinco , Animais , Zinco/metabolismo , Metalotioneína/metabolismo , Dobramento de Proteína , Simulação de Dinâmica Molecular , Sítios de Ligação , Mamíferos/metabolismo
6.
Vitam Horm ; 123: 231-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717986

RESUMO

Liver X receptors α and ß are members of the nuclear receptor family, which comprise a flexible N-terminal domain, a DNA binding domain, a hinge linker, and a ligand binding domain. Liver X receptors are important regulators of cholesterol and lipid homeostasis by controlling the transcription of numerous genes. Key to their transcriptional role is synergetic interaction among the domains. DNA binding domain binds on DNA; ligand binding domain is a crucial switch to control the transcription activity through conformational change caused by ligand binding. The Liver X receptors form heterodimers with retinoid X receptor and then the liganded heterodimer may recruit other necessary transcription components to form an active transcription complex.


Assuntos
Receptores X do Fígado , Humanos , Ligantes , Domínios Proteicos
7.
FEBS Open Bio ; 5: 454-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106520

RESUMO

The vertebrate egg coat, including mammalian zona pellucida, is an oocyte-specific extracellular matrix comprising two to six zona pellucida (ZP) glycoproteins. The egg coat plays important roles in fertilization, especially in species-specific interactions with sperm to induce the sperm acrosome reaction and to form the block to polyspermy. It is suggested that the physiological functions of the egg coat are mediated and/or regulated coordinately by peptide and carbohydrate moieties of the ZP glycoproteins that are spatially arranged in the egg coat, whereas a comprehensive understanding of the architecture of vertebrate egg-coat matrix remains elusive. Here, we deduced the orientations and/or distributions of chicken ZP glycoproteins, ZP1, ZP3 and ZPD, in the egg-coat matrix by confocal immunofluorescent microscopy, and in the ZP1-ZP3 complexes generated in vitro by co-immunoprecipitation assays. We further confirmed interdomain interactions of the ZP glycoproteins by far-Western blot analyses of the egg-coat proteins and pull-down assays of ZP1 in the serum, using recombinant domains of ZP glycoproteins as probes. Our results suggest that the ZP1 and ZP3 bind through their ZP-C domains to form the ZP1-ZP3 complexes and fibrils, which are assembled into bundles through interactions between the repeat domains of ZP1 to form the ZP1-ZP3 matrix, and that the ZPD molecules self-associate and bind to the ZP1-ZP3 matrix through its ZP-N and ZP-C domains to form the egg-coat matrix. Based on these results, we propose a tentative model for the architecture of the chicken egg-coat matrix that might be applicable to other vertebrate ones.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa