Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Small ; 20(38): e2401377, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38778735

RESUMO

Using nanoparticle surfactants to stabilize the liquid-liquid interface has attracted significant attention for developing all-liquid constructs including emulsions and liquid devices. Here, an efficient strategy is demonstrated to stabilize complex emulsions that consist of multiphase droplets by using the co-assembly between the cellulose nanocrystal and amine-functionalized polystyrene. Cellulose nanocrystal surfactants (CNCSs) form and assembly in situ at the specified area of emulsion interface, showing a unique pH responsiveness due to their dynamic nature and allowing the reconfiguration of complex emulsion from encapsulated to Janus structures. Such complex emulsions can be further used as the templates to fabricate polymeric particles with hollow, semi-spherical, and spherical shapes on large scale. These findings establish a promising platform for designing intelligent soft matter that can be used in microreactors, sensors, and anisotropic materials.

2.
Small ; : e2405106, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39233535

RESUMO

Conventional herbicide formulations suffer from serious problems such as easy drift, run-off and scouring into the environment, which pose enormous threats to human health and environmental safety. Herein, an innovative strategy is proposed to prepare oil-in-water nanoemulsions with long-term stability, enhanced droplet deposition, and improved nanoherbicide adhesion via steerable interfacial assembly of 1D amyloid-like protein nanocomposites. Bovine serum albumin (BSA) undergoes rapid amyloid-like aggregation upon reduction of its disulfide bond. The resulting phase-transitioned BSA (PTB) oligomers instantly self-assemble on the surface of cellulose nanofibers (CNF) to form the 1D PTB/CNF nanocomposites, which greatly expands the parameter space for interfacial assembly of amyloid-like proteins. The PTB/CNF nanocomposites exhibit excellent interfacial activity, enabling spontaneous adsorption at the oil-water interface to stabilize nanoemulsion. The excess PTB/CNF nanocomposites would also self-assemble at the air-aqueous interface upon spraying, resulting in efficient droplet deposition on (super)hydrophobic leaves. The deposited nanoherbicides show excellent resistance to wind/rain corrosion due to the robust amyloid-mediated adhesion, with a retention rate of more than 80% after severe scouring. Consequently, herbicide applications can be reduced by at least 30% compared to commercial emulsifiable concentrates, showing greater herbicidal efficiency. This study provides novel insights and approaches to promote sustainable agricultural development.

3.
Small ; 20(40): e2405892, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39113653

RESUMO

Nanoparticle surfactants have been widely used to construct structured liquids in oil-water systems. Less attention, though, has been given in non-aqueous systems, for example, oil-oil systems, mainly due to the lack of suitable surfactants. Here, by using newly developed molecular brush surfactants (MBSs) that form at the DMSO-silicone oil interface, the construction of all-oil microfluidic devices is reported with advanced functions. Due to the high interfacial activity of MBSs, Plateau-Rayleigh instabilities of liquid jets can be completely suppressed, leading to the production of liquid threads with jammed MBSs at the interface. Taking advantage of the 3D printing technique, all-oil microfluidic devices with complex structures can be constructed, showing promising applications in mass transmission, chemical separation, and material synthesis.

4.
Small ; 19(11): e2206878, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539264

RESUMO

Engineering 2D nanosheets with well-defined porous structures and their assembled heterostructure membrane is a promising method to improve osmotic energy conversion. However, it is still a great challenge to directly fabricate 2D nanosheets with regular parallel nanochannels in aqueous media. Here, the desired functional nanosheets and heterostructure membrane device are successfully prepared through a simple interfacial assembly strategy. In this method, monolayer cylindrical monomicelles closely arrange and assemble on the surfaces of graphene oxide, and the resulting nanosheets with monolayered aligned nanowire polymer arrays parallel to the substrate surfaces are then obtained. Subsequently, a heterostructured membrane is constructed by assembling these 2D nanosheets on macroporous alumina. The nanofluidic membrane device with asymmetric geometry and charge polarity exhibits smart ion transport properties, and the output osmotic power density is ≈1.22 and 1.63 times over the reported pure 2D graphene oxide and biomass-derived membranes, respectively. In addition, theoretical calculations are carried out to reveal the mechanisms for ion selectivity and salinity gradient energy conversion. This monolayered interfacial assembly approach can open up new avenues for the synthesis of functional porous low-dimensional nanomaterials and membrane devices, and expand the palette of materials selection for many applications.

5.
Small ; 19(23): e2208288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36876441

RESUMO

In this work, it is reported that large-area (centimeter-scale) arrays of non-close-packed polystyrene-tethered gold nanorod (AuNR@PS) can be prepared through a liquid-liquid interfacial assembly method. Most importantly, the orientation of AuNRs in the arrays can be controlled by changing the intensity and direction of electric field applied in the solvent annealing process. The interparticle distance of AuNR can be tuned by varying the length of polymer ligands. Moreover, the AuNR@PS with short PS ligand are favorited to form orientated arrays with the assistance of electric field, while long PS ligands make the orientation of AuNRs difficult. The orientated AuNR@PS arrays are employed as the nano-floating gate of field-effect transistor memory device. Tunable charge trapping and retention characteristics in the device can be realized by electrical pulse with visible light illumination. The memory device with orientated AuNR@PS array required less illumination time (1 s) at the same onset voltage in programming operation, compared to the control device with disordered AuNR@PS array (illumination time: 3 s). Moreover, the orientated AuNR@PS array-based memory device can maintain the stored data for more than 9000 s, and exhibits stable endurance characteristic without significant degradation in 50 programming/reading/erasing/reading cycles.

6.
Small ; 19(16): e2206524, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670057

RESUMO

Shaping soft materials into prescribed 3D complex designs has been challenging yet feasible using various 3D printing technologies. For a broader range of soft matters to be printable, liquid-in-liquid 3D printing techniques have emerged in which an ink phase is printed into 3D constructs within a bath. Most of the attention in this field has been focused on using a support bath with favorable rheology (i.e., shear-thinning behavior) which limits the selection of materials, impeding the broad application of such techniques. However, a growing body of work has begun to leverage the interaction or association of the two involved phases (specifically at the liquid-liquid interface) to fabricate complex constructs from a myriad of soft materials with practical structural, mechanical, optical, magnetic, and communicative properties. This review article has provided an overview of the studies on such associative liquid-in-liquid 3D printing techniques along with their fundamentals, underlying mechanisms, various characterization techniques used for ensuring the structural stability, and practical properties of prints. Also, the future paths with the potential applications are discussed.

7.
Angew Chem Int Ed Engl ; 62(38): e202310383, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37550249

RESUMO

One-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance. Using electrochemical nitrate reduction reaction (NO3 - RR) as a representative reaction, the iron-based nanofibers (Fe/NFs) assembly structure achieved an excellent nitrate removal capacity of 2317 mg N/g Fe and N2 selectivity up to 97.2 %. This strategy could promote the rational design and synthesis of fiber-based electrocatalysts.

8.
Angew Chem Int Ed Engl ; 62(16): e202218440, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36781384

RESUMO

Nanoparticle surfactants (NPSs), formed by using dynamic interactions between nanoparticles and complementary ligands at the liquid-liquid interface, have emerged as "smart emulsifiers" with attributes of high emulsification efficiency, long-term stability, and on-demand emulsification/demulsification capabilities. However, only pH-responsiveness can be adopted for the assembly of reported NPSs formed by electrostatic interactions. Here, we propose an alternative design strategy, by taking advantage of the ferrocenium (Fc+ ) sulfate ion pair, to develop a new type of cellulose nanocrystal (CNC) surfactant. The Fc+ groups are sensitive to pH, redox reagents and voltage, imparting the CNC surfactants and derived Pickering emulsions with multi-stimuli-responsiveness, and showing promising applications in controllable delivery, release, and biphasic biocatalysis.

9.
Small ; 18(20): e2200220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279945

RESUMO

The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.


Assuntos
Condutividade Elétrica , Porosidade
10.
Nanotechnology ; 33(38)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35697002

RESUMO

The spontaneous self-assembly of metal nanocrystals into two-dimensional (2D) monolayer superlattices with highly ordered symmetry and configuration paves the way towards the fabrication of functional materials. However, there remains great challenge for anisotropic nanocrystals to self-assembly into high quality superlattice because of the orientation and configuration consistency. Here, a facile yet universal solvent annealing driven 2D interfacial assembly of synthetic dried metal nanocrystals is firstly developed to realize the construction of the non-close-packing 2D monolayer gold nanocube (AuNC) superlattice with tunable interparticle distance and internal configurations (i.e. face-to-face and hexagonally-packed arrangement), which is achieved by precisely controlling molecular weight of polymer ligands tethered on AuNCs and the van der Waals forces between the adjacent AuNCs. In addition, the scale of the generated 2D monolayer AuNC superlattice with highly ordered internal arrangement and orientation can reach up to hundreds of micrometers, thus acquiring significant surface-enhanced Raman scattering performance of the large scale superlattice due to the strong plasma coupling effect. This strategy not only provides a robust route to fabricate nanocrystal superlattice structures but also offers a promising platform for preparing diverse functional materials with potential applications in electronics, photonics, detections, and others.

11.
Macromol Rapid Commun ; 43(23): e2200542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35856411

RESUMO

2D conducting polymer thin film recently has garnered numerous interests as a means of combining the molecular aggregate ordering and promoting in-plane charge transport for large-scale/flexible organic electronics. However, it remains far from satisfactory for conducting polymer chains to achieve desirable surface topography and crystallinity due to lack of control over the precursor-involved interfacial assembly. Herein, wafer-size polyaniline (PANI) and tetra-aniline thin films are developed via a controlled interfacial synthesis with customized surface morphology and crystallinity through two typical aniline precursors selective polymerization. Two crucial competing assembly mechanisms, a) direct interfacial polymerization, b) solution polymerization and subsequent interfacial assembly, are investigated to play a vital role in determining elemental chain length and aggregate architecture. The optimal PANI thin film manifests ultraflat surface topography and unambiguous crystalline domains, which also enabling fascinating ammonia sensing capability with 31.4% ppm-1 sensitivity, fast response time (88 s) with astonishing selectivity, repeatability, and recovery capability. The thus-demonstrated strategy with wafer-scale processing potential and flexible microdevice offers a promising route for large-scale manufacturing thin-film organic electronics.


Assuntos
Compostos de Anilina , Polímeros , Polimerização , Compostos de Anilina/química
12.
Sci Technol Adv Mater ; 23(1): 619-632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212681

RESUMO

Poly(3-hexylthiophene) (P3HT) is a typical conducting polymer widely used in organic thin-film transistors, polymer solar cells, etc., due to good processability and remarkable charging carrier and hole mobility. It is known that the ordered structure assembled by π-conjugated P3HT chains could promote the performance of electronic devices. Interfacial and confined molecular-assembly is one effective way to generate an ordered structure by tuning surface geometry and substrate interaction. Great efforts have been made to investigate the molecular chain assembly of P3HT on a curved surface that is confined to different geometry. In this report, we review the recent advances of the interfacial chain assembly of P3HT in a flat or curved confined space and its application to organic electronic devices. In principle, this interfacial assembly of P3HT at a nanoscale could improve the electronic properties, such as the current transport, power conversion efficiency, etc. Therefore, this review on interfacial and confined assembly of P3HT could give general implications for designing high-performance organic electronic devices.

13.
Angew Chem Int Ed Engl ; 61(25): e202203741, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384203

RESUMO

Integrating different types of supramolecular interactions opens the possibility to generate nanoparticle surfactants (NPSs) at the liquid-liquid interface that are responsive to multiple stimuli. Here we develop a covalently modified polyoxometalate/ß-cyclodextrin (POM/ß-CD) organic-inorganic hybrid, consisting of a negatively charged POM cluster with ß-CD host groups. The POM/ß-CD hybrid can be dispersed in water and interacts at a water/oil interface with ligands dissolved in an oil phase through electrostatic or host-guest interactions, thereby generating POM-surfactants (POMSs) having pH, redox, and guest-competitive responsiveness, respectively. By taking advantage of the jamming of POMSs at the interface, a reconfigurable all-liquid system could be produced that is responsive to orthogonal changes in the external environment.

14.
Angew Chem Int Ed Engl ; 60(6): 2871-2876, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33111473

RESUMO

Locking nonequilibrium shapes of liquids into targeted architectures by interfacial jamming of nanoparticles is an emerging area in material science. 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) shows three different aggregation states that present an absorption imaging platform to monitor the assembly and jamming of supramolecular polymer surfactants (SPSs) at the liquid/liquid interface. The interfacial interconversion of H6 TPPS, specifically H4 TPPS2- dissolved in water, from J- to an H-aggregation was induced by strong electrostatic interactions with amine-terminated polystyrene dissolved in toluene at the water/toluene interface. This resulted in color-tunable liquids due to interfacial jamming of the SPSs formed between H4 TPPS2- and amine-terminated polystyrene. However, the formed SPSs cannot lock in nonequilibrium shapes of liquids. In addition, a self-wrinkling behavior was observed when amphiphilic triblock copolymers of PS-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) were used to interact with H4 TPPS2- . Subsequently, the SPSs formed can lock in nonequilibrium shapes of liquids.

15.
Nano Lett ; 19(6): 4118-4125, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31140281

RESUMO

The ultrasonication-triggered interfacial assembly approach was developed to synthesize magnetic Janus amphiphilic nanoparticles (MJANPs) for cancer theranostic applications, where the biocompatible octadecylamine is used as a molecular linker to mediate the interactions between hydrophobic and hydrophilic nanoparticles across the oil-water interface. The obtained Co cluster-embedded Fe3O4 nanoparticles-graphene oxide (CCIO-GO) MJANPs exhibited superior magnetic heating efficiency and transverse relaxivity, 64 and 4 times higher than that of commercial superparamagnetic iron oxides, respectively. The methodology has been applicable to nanoparticles of various dimensions (5-100 nm), morphologies (sphere, ring, disk, and rod), and composition (metal oxides, noble metal and semiconductor compounds, etc.), thereby greatly enriching the array of MJANPs. In vivo theranostic applications using the tumor-bearing mice model further demonstrated the effectiveness of these MJANPs in high-resolution multimodality imaging and high-efficiency cancer therapeutics. The ubiquitous assembly approach developed in the current study pave the way for on-demand design of high-performance Janus amphiphilic nanoparticles for various clinical diagnoses and therapeutic applications.

16.
Angew Chem Int Ed Engl ; 59(12): 4908-4913, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31960572

RESUMO

Graphdiyne nanoribbons with high chemical precision are of great significance for further understanding of the intrinsic properties of graphdiyne and the relationship between structure and properties. However, the reliable synthesis of graphdiyne nanoribbons with chemical precision remains a significant challenge. A facile method is now presented for fabrication of graphdiyne nanoribbons with uniform width through stepwise inter- and intramolecular Glaser-Hay coupling reaction of ethynyl groups. The synthetic ribbons were interwoven into nanotextiles by π-π stacking and were applied for protective coating of Li-electrode in Li-ion batteries, which efficiently suppressed the growth of the Li dendrites during cycling and prolonged the life span of Li-metal batteries.

17.
Chemistry ; 25(2): 635-641, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351499

RESUMO

Aqueous Zn-air batteries are emerging to be ideal next-generation energy-storage devices with high safety and high energy/power densities. However, the rational design and fabrication of low-cost, highly efficient, and durable electrocatalysts on the cathode side remain highly desired. Herein, template-assisted, scalable Fe-implanted N-doped porous carbon nanotube networks (Fe-N-CNNs) have been synthesized based on an environmentally friendly template hydroxyapatite nanowires (HAP NWs). Thanks to the hierarchical meso/micropores, high specific surface area, and abundant active sites, the optimized Fe-N-CNNs exhibit excellent oxygen reduction activity. Furthermore, the Zn-air batteries based on the Fe-N-CNNs cathode deliver a high discharge voltage of 1.27 V at a current density of 20 mA cm-2 and a large peak power density of 202.2 mW cm-2 . More far-reaching, this HAP-based template strategy opens a new avenue toward the mass production of efficient, cost-effective electrocatalysts, and the Fe-N-CNNs with hollow interiors are expected to extend their other potential uses in energy storage, molecular sieves, adsorbents, and biomedical engineering.

18.
Chemphyschem ; 20(1): 23-30, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30444021

RESUMO

Self-assembly of nanoparticles (NPs) is at the heart of nanotechnology, and has shown many potential applications in fabricating nanodevices with highly controlled functionality. Two-dimensional (2D) arrays of NPs can provide a thin and uniform NP array with each NP being exposed on the surface to maximize NP catalysis. This minireview summarizes the recent progress on the fabrication and application of 2D NP arrays. It conveys the important message to readers that creation of libraries of NP arrays with varying catalytic strengths is an exciting direction in catalysis. This approach can be used to solve complicated catalytic problems in which multiple chemical reactions need to be catalyzed in a single reaction vessel.

19.
Angew Chem Int Ed Engl ; 58(50): 18171-18176, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591756

RESUMO

2D transition metal carbides and nitrides (MXenes), a class of emerging nanomaterials with intriguing properties, have attracted significant attention in recent years. However, owing to the highly hydrophilic nature of MXene nanosheets, assembly strategies of MXene at liquid-liquid interfaces have been very limited and challenging. Herein, through the cooperative assembly of MXene and amine-functionalized polyhedral oligomeric silsesquioxane at the oil-water interface, we report the formation, assembly, and jamming of a new type MXene-based Janus-like nanoparticle surfactants, termed MXene-surfactants (MXSs), which can significantly enhance the interfacial activity of MXene nanosheets. More importantly, this simple assembly strategy opens a new platform for the fabrication of functional MXene assemblies from mesoscale (e.g., structured liquids) to macroscale (e.g., aerogels), that can be used for a range of applications, including nanocomposites, electronic devices, and all-liquid microfluidic devices.

20.
Proc Natl Acad Sci U S A ; 112(20): 6336-40, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941380

RESUMO

Rod-like colloids distort fluid interfaces and interact by capillarity. We explore this interaction at the free surface of aligned nematic liquid crystal films. Naive comparison of capillary and elastic energies suggests that particle assembly would be determined solely by surface tension. Here, we demonstrate that, under certain circumstances, the capillary and elastic effects are complementary and each plays an important role. Particles assemble end-to-end, as dictated by capillarity, and align along the easy axis of the director field, as dictated by elasticity. On curved fluid interfaces, however, curvature capillary energies can overcome the elastic orientations and drive particle migration along curvature gradients. Domains of dominant interaction and their transition are investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa