Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2302676120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590406

RESUMO

Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological diseases, such as Alzheimer's disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multilayer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in the mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples, altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implies that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory.


Assuntos
Doença de Alzheimer , Líquidos Corporais , Transtornos Cognitivos , Humanos , Animais , Camundongos , Doença de Alzheimer/genética , Cognição , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Brain ; 147(8): 2803-2816, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650060

RESUMO

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.


Assuntos
Eletroencefalografia , Tálamo , Humanos , Tálamo/fisiopatologia , Masculino , Feminino , Adulto , Fases do Sono/fisiologia , Epilepsia/fisiopatologia , Adulto Jovem , Córtex Cerebral/fisiopatologia , Adolescente , Sono/fisiologia , Pessoa de Meia-Idade
3.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325327

RESUMO

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Assuntos
Eletrocorticografia , Humanos , Masculino , Feminino , Adulto , Eletrocorticografia/métodos , Adulto Jovem , Adolescente , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Criança , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia
4.
Brain ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874456

RESUMO

Successful surgical treatment of drug-resistant epilepsy traditionally relies on the identification of seizure onset zones (SOZs). Connectome-based analyses of electrographic data from stereo electroencephalography (SEEG) may empower improved detection of SOZs. Specifically, connectome-based analyses based on the Interictal Suppression Hypothesis (ISH) posit that when the patient is not having a seizure, SOZs are inhibited by non-SOZs through high inward connectivity and low outward connectivity. However, it is not clear whether there are other motifs that can better identify potential SOZs. Thus, we sought to use unsupervised machine learning to identify network motifs that elucidate SOZs and investigate if there is another motif that outperforms the ISH. Resting-state SEEG data from 81 patients with drug-resistant epilepsy undergoing a pre-surgical evaluation at Vanderbilt University Medical Center were collected. Directed connectivity matrices were computed using the alpha band (8-12Hz). Principal component analysis (PCA) was performed on each patient's connectivity matrix. Each patient's components were analyzed qualitatively to identify common patterns across patients. A quantitative definition was then used to identify the component that most closely matched the observed pattern in each patient. A motif characteristic of the Interictal Suppression Hypothesis (high-inward and low-outward connectivity) was present in all individuals and found to be the most robust motif for identification of SOZs in 64/81 (79%) patients. This principal component demonstrated significant differences in SOZs compared to non-SOZs. While other motifs for identifying SOZs were present in other patients, they differed for each patient, suggesting that seizure networks are patient specific, but the ISH is present in nearly all networks. We discovered that a potentially suppressive motif based on the Interictal Suppression Hypothesis was present in all patients, and it was the most robust motif for SOZs in 79% of patients. Each patient had additional motifs that further characterized SOZs, but these motifs were not common across all patients. This work has the potential to augment clinical identification of SOZs to improve epilepsy treatment.

5.
Neurobiol Dis ; 191: 106409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218457

RESUMO

Interictal epileptiform discharges (IEDs) often co-occur across spatially-separated cortical regions, forming IED networks. However, the factors prompting IED propagation remain unelucidated. We hypothesized that slow oscillations (SOs) might facilitate IED propagation. Here, the amplitude and phase synchronization of SOs preceding propagating and non-propagating IEDs were compared in 22 patients with focal epilepsy undergoing intracranial electroencephalography (EEG) evaluation. Intracranial channels were categorized into the irritative zone (IZ) and normal zone (NOZ) regarding the presence of IEDs. During wakefulness, we found that pre-IED SOs within the IZ exhibited higher amplitudes for propagating IEDs than non-propagating IEDs (delta band: p = 0.001, theta band: p < 0.001). This increase in SOs was also concurrently observed in the NOZ (delta band: p = 0.04). Similarly, the inter-channel phase synchronization of SOs prior to propagating IEDs was higher than those preceding non-propagating IEDs in the IZ (delta band: p = 0.04). Through sliding window analysis, we observed that SOs preceding propagating IEDs progressively increased in amplitude and phase synchronization, while those preceding non-propagating IEDs remained relatively stable. Significant differences in amplitude occurred approximately 1150 ms before IEDs. During non-rapid eye movement (NREM) sleep, SOs on scalp recordings also showed higher amplitudes before intracranial propagating IEDs than before non-propagating IEDs (delta band: p = 0.006). Furthermore, the analysis of IED density around sleep SOs revealed that only high-amplitude sleep SOs demonstrated correlation with IED propagation. Overall, our study highlights that transient but widely distributed SOs are associated with IED propagation as well as generation in focal epilepsy during sleep and wakefulness, providing new insight into the EEG substrate supporting IED networks.


Assuntos
Eletroencefalografia , Epilepsias Parciais , Humanos , Sono , Eletrocorticografia , Vigília
6.
J Pediatr ; : 114217, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074735

RESUMO

OBJECTIVE: To establish the utility of long-term electroencephalogram (EEG) in forecasting epilepsy onset in children with autism spectrum disorder (ASD). STUDY DESIGN: A single-institution, retrospective analysis of children with ASD, examining long-term overnight EEG recordings collected over a period of 15 years, was conducted. Clinical EEG findings, patient demographics, medical histories, and additional Autism Diagnostic Observation Schedule (ADOS) data were examined. Predictors for the timing of epilepsy onset were evaluated using survival analysis and Cox regression. RESULTS: Among 151 patients, 17.2% (n=26) developed unprovoked seizures (Sz group), while 82.8% (n=125) did not (non-Sz group). The Sz group displayed a higher percentage of interictal epileptiform discharges (IEDs) in their initial EEGs compared with the non-Sz group (46.2% vs. 20.0%, p=0.01). The Sz group also exhibited a greater frequency of slowing (42.3% vs. 13.6%, p < 0.01). The presence of IEDs or slowing predicted an earlier seizure onset, based on survival analysis. Multivariate Cox proportional hazards regression revealed that the presence of any IEDs (HR 3.83, 95% CI 1.38-10.65, p=0.01) or any slowing (HR 2.78, 95% CI 1.02-7.58, p=0.046 significantly increased the risk of developing unprovoked seizures. CONCLUSION: Long-term EEGs are valuable for predicting future epilepsy in children with ASD. These findings can guide clinicians in early education and potential interventions for epilepsy prevention.

7.
Eur J Nucl Med Mol Imaging ; 51(7): 1891-1908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393374

RESUMO

Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.


Assuntos
Epilepsia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Epilepsia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/normas , Medicina Nuclear , Europa (Continente)
8.
Epilepsia ; 65(7): 2082-2098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758110

RESUMO

OBJECTIVE: Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS: We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS: Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE: Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal , Hipocampo , Ácido Caínico , Animais , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/induzido quimicamente , Camundongos , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Lateralidade Funcional/fisiologia , Convulsões/fisiopatologia , Convulsões/induzido quimicamente
9.
Epilepsia ; 65(1): 190-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983643

RESUMO

OBJECTIVE: Temporal coordination between oscillations enables intercortical communication and is implicated in cognition. Focal epileptic activity can affect distributed neural networks and interfere with these interactions. Refractory pediatric epilepsies are often accompanied by substantial cognitive comorbidity, but mechanisms and predictors remain mostly unknown. Here, we investigate oscillatory coupling across large-scale networks in the developing brain. METHODS: We analyzed large-scale intracranial electroencephalographic recordings in children with medically refractory epilepsy undergoing presurgical workup (n = 25, aged 3-21 years). Interictal epileptiform discharges (IEDs), pathologic high-frequency oscillations (HFOs), and sleep spindles were detected. Spatiotemporal metrics of oscillatory coupling were determined and correlated with age, cognitive function, and postsurgical outcome. RESULTS: Children with epilepsy demonstrated significant temporal coupling of both IEDs and HFOs to sleep spindles in discrete brain regions. HFOs were associated with stronger coupling patterns than IEDs. These interactions involved tissue beyond the clinically identified epileptogenic zone and were ubiquitous across cortical regions. Increased spatial extent of coupling was most prominent in older children. Poor neurocognitive function was significantly correlated with high IED-spindle coupling strength and spatial extent; children with strong pathologic interactions additionally had decreased likelihood of postoperative seizure freedom. SIGNIFICANCE: Our findings identify pathologic large-scale oscillatory coupling patterns in the immature brain. These results suggest that such intercortical interactions could predict risk for adverse neurocognitive and surgical outcomes, with the potential to serve as novel therapeutic targets to restore physiologic development.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Criança , Epilepsias Parciais/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Sono , Cognição , Resultado do Tratamento , Eletroencefalografia
10.
Epilepsia ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101302

RESUMO

OBJECTIVE: To use intracranial electroencephalography (EEG) to characterize functional magnetic resonance imaging (fMRI) activation maps associated with high-frequency oscillations (HFOs) (80-250 Hz) and examine their proximity to HFO- and seizure-generating tissue. METHODS: Forty-five patients implanted with intracranial depth electrodes underwent a simultaneous EEG-fMRI study at 3 T. HFOs were detected algorithmically from cleaned EEG and visually confirmed by an experienced electroencephalographer. HFOs that co-occurred with interictal epileptiform discharges (IEDs) were subsequently identified. fMRI activation maps associated with HFOs were generated that occurred either independently of IEDs or within ±200 ms of an IED. For all significant analyses, the Maximum, Second Maximum, and Closest activation clusters were identified, and distances were measured to both the electrodes where the HFOs were observed and the electrodes involved in seizure onset. RESULTS: We identified 108 distinct groups of HFOs from 45 patients. We found that HFOs with IEDs produced fMRI clusters that were closer to the local field potentials of the corresponding HFOs observed within the EEG than HFOs without IEDs. In addition to the fMRI clusters being closer to the location of the EEG correlate, HFOs with IEDs generated Maximum clusters with greater z-scores and larger volumes than HFOs without IEDs. We also observed that HFOs with IEDs resulted in more discrete activation maps. SIGNIFICANCE: Intracranial EEG-fMRI can be used to probe the hemodynamic response to HFOs. The hemodynamic response associated with HFOs that co-occur with IEDs better identifies known epileptic tissue than HFOs that occur independently.

11.
Epilepsia ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162772

RESUMO

OBJECTIVE: This study was undertaken to investigate the potential of interictal electroencephalographic (EEG) findings and electrically stimulated seizures during stereo-EEG (SEEG) as surrogate markers for the spontaneous seizure onset zone (spSOZ). We hypothesized that combining the localizing information of these markers would allow clinically meaningful estimation of the spSOZ. METHODS: We included all patients (n = 63) who underwent SEEG between January 2013 and March 2020 at Helsinki University Hospital and had spontaneous seizures during the recording. We scored spikes, gamma activity, and background abnormality on each channel visually during a 12-h epoch containing waking state and sleep. Based on semiology, we classified stimulated seizures as typical or atypical/unclassifiable and estimated the stimulated SOZ (stimSOZ) for typical seizures. To assess which markers increased the odds of channel inclusion in the spSOZ, we fitted mixed effects logistic regression models. RESULTS: A combined regression model including the stimSOZ and interictal markers scored during sleep performed better in estimating which channels were part of the spSOZ than models based on stimSOZ (p < .001) or interictal markers (p < .001) alone. Of the individual markers, the effect sizes were greatest for inclusion of a channel in the stimSOZ (odds ratio [OR] = 60, 95% confidence interval [CI] = 37-97, p < .001) and for continuous (OR = 25, 95% CI = 12-55, p < .001) and subcontinuous (OR = 36, 95% CI = 21-64, p < .001) interictal spiking. At the individual level, the model's accuracy to predict spSOZ inclusion varied markedly (median accuracy = 85.7, range = 54.4-100), which was not explained by etiology (p > .05). SIGNIFICANCE: Compared to either marker alone, combining visually rated interictal SEEG markers and stimulated seizures improved prediction of which SEEG channels belonged to the spSOZ. Inclusion in the stimSOZ and continuous or subcontinuous spikes increased the odds of spSOZ inclusion the most. Future studies should investigate whether suboptimal sampling of the true epileptogenic zone can explain the model's poor performance in certain patients.

12.
Eur J Neurol ; 31(4): e16208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270448

RESUMO

BACKGROUND AND PURPOSE: Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS: Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS: Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS: dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.


Assuntos
Lesões Encefálicas , Couro Cabeludo , Humanos , Prognóstico , Eletroencefalografia , Convulsões
13.
Headache ; 64(7): 859-864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957980

RESUMO

The small molecule calcitonin gene-related peptide receptor antagonists (gepants) are the only drug class with medicines indicated for both the acute and preventive treatment of migraine. Given this dual capacity to both treat and prevent, along with their favorable tolerability profiles and lack of an association with medication-overuse headache, headache specialists have begun to use gepants in ways that transcend the traditional categories of acute and preventive treatment. One approach, called situational prevention, directs patients to treat during the interictal phase, before symptoms develop, in situations of increased risk for migraine attacks. Herein, we present three patients to illustrate scenarios of gepant use for situational prevention. In each case, a gepant was started in anticipation of a period of increased headache probability (vulnerability) and continued for a duration of 1 day to 5 consecutive days. Although this approach may expose patients to medication when headache may not have developed, the tolerability and safety profile and preventive effect of gepants may represent a feasible approach for some patients. Situational prevention is an emerging strategy for managing migraine before symptoms develop in individuals who can identify periods when the probability of headache is high. This paper is intended to increase awareness of this strategy and stimulate future randomized, placebo-controlled trials to rigorously assess this strategy.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/tratamento farmacológico , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/administração & dosagem , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/efeitos adversos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade
14.
Brain ; 146(12): 5168-5181, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527460

RESUMO

Interictal epileptiform discharges have been shown to propagate from focal epileptogenic sources as travelling waves or through more rapid white matter conduction. We hypothesize that both modes of propagation are necessary to explain interictal discharge timing delays. We propose a method that, for the first time, incorporates both propagation modes to identify unique potential sources of interictal activity. We retrospectively analysed 38 focal epilepsy patients who underwent intracranial EEG recordings and diffusion-weighted imaging for epilepsy surgery evaluation. Interictal discharges were detected and localized to the most likely source based on relative delays in time of arrival across electrodes, incorporating travelling waves and white matter propagation. We assessed the influence of white matter propagation on distance of spread, timing and clinical interpretation of interictal activity. To evaluate accuracy, we compared our source localization results to earliest spiking regions to predict seizure outcomes. White matter propagation helps to explain the timing delays observed in interictal discharge sequences, underlying rapid and distant propagation. Sources identified based on differences in time of receipt of interictal discharges are often distinct from the leading electrode location. Receipt of activity propagating rapidly via white matter can occur earlier than more local activity propagating via slower cortical travelling waves. In our cohort, our source localization approach was more accurate in predicting seizure outcomes than the leading electrode location. Inclusion of white matter in addition to travelling wave propagation in our model of discharge spread did not improve overall accuracy but allowed for identification of unique and at times distant potential sources of activity, particularly in patients with persistent postoperative seizures. Since distant white matter propagation can occur more rapidly than local travelling wave propagation, combined modes of propagation within an interictal discharge sequence can decouple the commonly assumed relationship between spike timing and distance from the source. Our findings thus highlight the clinical importance of recognizing the presence of dual modes of propagation during interictal discharges, as this may be a cause of clinical mislocalization.


Assuntos
Epilepsias Parciais , Substância Branca , Humanos , Estudos Retrospectivos , Epilepsias Parciais/cirurgia , Convulsões/cirurgia , Eletrocorticografia , Eletroencefalografia/métodos
15.
Brain ; 146(5): 1903-1915, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729683

RESUMO

While seizure activity may be electrographically widespread, increasing evidence has suggested that ictal discharges may in fact represent travelling waves propagated from a focal seizure source. Interictal epileptiform discharges (IEDs) are an electrographic manifestation of excessive hypersynchronization of cortical activity that occur between seizures and are considered a marker of potentially epileptogenic tissue. The precise relationship between brain regions demonstrating IEDs and those involved in seizure onset, however, remains poorly understood. Here, we hypothesize that IEDs likewise reflect the receipt of travelling waves propagated from the same regions which give rise to seizures. Forty patients from our institution who underwent invasive monitoring for epilepsy, proceeded to surgery and had at least one year of follow-up were included in our study. Interictal epileptiform discharges were detected using custom software, validated by a clinical epileptologist. We show that IEDs reach electrodes in sequences with a consistent temporal ordering, and this ordering matches the timing of receipt of ictal discharges, suggesting that both types of discharges spread as travelling waves. We use a novel approach for localization of ictal discharges, in which time differences of discharge receipt at nearby electrodes are used to compute source location; similar algorithms have been used in acoustics and geophysics. We find that interictal discharges co-localize with ictal discharges. Moreover, interictal discharges tend to localize to the resection territory in patients with good surgical outcome and outside of the resection territory in patients with poor outcome. The seizure source may originate at, and also travel to, spatially distinct IED foci. Our data provide evidence that interictal discharges may represent travelling waves of pathological activity that are similar to their ictal counterparts, and that both ictal and interictal discharges emerge from common epileptogenic brain regions. Our findings have important clinical implications, as they suggest that seizure source localizations may be derived from interictal discharges, which are much more frequent than seizures.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Encéfalo , Convulsões , Epilepsia/cirurgia , Mapeamento Encefálico
16.
Crit Care ; 28(1): 244, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014421

RESUMO

This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.


Assuntos
Eletroencefalografia , Unidades de Terapia Intensiva , Convulsões , Humanos , Eletroencefalografia/métodos , Monitorização Fisiológica/métodos , Convulsões/diagnóstico , Convulsões/fisiopatologia , Unidades de Terapia Intensiva/organização & administração , Cuidados Críticos/métodos , Estado Epiléptico/diagnóstico , Estado Epiléptico/fisiopatologia , Estado Terminal/terapia
17.
Epilepsy Behav ; 158: 109956, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059138

RESUMO

OBJECTIVE: The clinical course of interictal psychosis (IIP) has not yet been investigated. We aimed to compared the psychopathology and time-relevant indices between chronic IIP (CIIP) and schizophrenia (SC) METHODS: In this comprehensive psychopathological study, patients with chronic psychosis with and without epilepsy (127 with CIIP and 187 with SC) were compared. Psychopathology was measured using the Brief Psychiatric Rating Scale (BPRS): total, negative symptoms (NSs), positive symptoms (PSs), and anxiety-depressive symptoms (ADSs). Time-relevant indices included age at the time of evaluation, age at the onset of psychosis, and duration of psychosis. The psychopathology of psychosis types and time-relevant indices were analyzed using Pearson's correlation coefficient analysis of covariance. RESULTS:  Age at the time of evaluation was significantly correlated with NS, and ADS scores. Age-relevant trajectories significantly interacted with psychosis types. As age advanced, patients with SC exhibited increased scores, whereas patients with CIIP often exhibited decreased (or unchanged) scores. Age at onset of psychosis was significantly correlated with NS and ADS outcomes in patients with CIIP, whereas it was not correlated in patients with SC. There were significant interactions between age at onset and psychosis types. Patients with early-onset CIIP exhibited higher NS and lower ADS scores, whereas patients with SC exhibited no particular trajectory. The duration of psychosis significantly interacted with the psychosis types in the BPRS total, NSs and PSs. As duration increased, patients with CIIP exhibited no significant relationship, whereas patients with SC exhibited significantly higher psychotic scores. CONCLUSION: Psychopathological courses differ between patients with CIIP and SC. Although patients with SC often exhibit deteriorations in psychotic symptoms, patients with CIIP exhibit no distinct deterioration. These findings can contribute psychiatric nosology, treatment strategies, and prediction outcomes.

18.
Epilepsy Behav ; 158: 109931, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970895

RESUMO

While time spent in slow wave sleep (SWS) after learning promotes memory consolidation in the healthy brain, it is unclear if the same benefit is obtained in patients with temporal lobe epilepsy (TLE). Interictal epileptiform discharges (IEDs) are potentiated during SWS and thus may disrupt memory consolidation processes thought to depend on hippocampal-neocortical interactions. Here, we explored the relationship between SWS, IEDs, and overnight forgetting in patients with TLE. Nineteen patients with TLE studied object-scene pairs and memory was tested across a day of wakefulness (6 hrs) and across a night of sleep (16 hrs) while undergoing continuous scalp EEG monitoring. We found that time spent in SWS after learning was related to greater forgetting overnight. Longer duration in SWS and number of IEDs were each associated with greater forgetting, although the number of IEDs did not mediate the relationship between SWS and memory. Further research, particularly with intracranial recordings, is required to identify the mechanisms by which SWS and IEDs can be pathological to sleep-dependent memory consolidation in patients with TLE.

19.
Neurocrit Care ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671312

RESUMO

BACKGROUND: The ictal-interictal continuum (IIC) consists of several electroencephalogram (EEG) patterns that are common in critically ill adults. Studies focused on the IIC are limited in critically ill children and have focused primarily on associations with electrographic seizures (ESs). We report the incidence of the IIC in the pediatric intensive care unit (PICU). We then compare IIC patterns to rhythmic and periodic patterns (RPP) not meeting IIC criteria looking for associations with acute cerebral abnormalities, ES, and in-hospital mortality. METHODS: This was a retrospective review of prospectively collected data for patients admitted to the PICU at Children's National Hospital from July 2021 to January 2023 with continuous EEG. We excluded patients with known epilepsy and cerebral injury prior to presentation. All patients were screened for RPP. The American Clinical Neurophysiology Society standardized Critical Care EEG terminology for the IIC was applied to each RPP. Associations between IIC and RPP not meeting IIC criteria, with clinical and EEG variables, were calculated using odds ratios (ORs). RESULTS: Of 201 patients, 21% (42/201) had RPP and 12% (24/201) met IIC criteria. Among patients with an IIC pattern, the median age was 3.4 years (interquartile range (IQR) 0.6-12 years). Sixty-seven percent (16/24) of patients met a single IIC criterion, whereas the remainder met two criteria. ESs were identified in 83% (20/24) of patients and cerebral injury was identified in 96% (23/24) of patients with IIC patterns. When comparing patients with IIC patterns with those with RPP not qualifying as an IIC pattern, both patterns were associated with acute cerebral abnormalities (IIC OR 26 [95% confidence interval {CI} 3.4-197], p = 0.0016 vs. RPP OR 3.5 [95% CI 1.1-11], p = 0.03), however, only the IIC was associated with ES (OR 121 [95% CI 33-451], p < 0.0001) versus RPP (OR 1.3 [0.4-5], p = 0.7). CONCLUSIONS: Rhythmic and periodic patterns and subsequently the IIC are commonly seen in the PICU and carry a high association with cerebral injury. Additionally, the IIC, seen in more than 10% of critically ill children, is associated with ES. The independent impact of RPP and IIC patterns on secondary brain injury and need for treatment of these patterns independent of ES requires further study.

20.
Neuroimage ; 270: 119961, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848970

RESUMO

Intracranial electroencephalography (iEEG) presents a unique opportunity to extend human neuroscientific understanding. However, typically iEEG is collected from patients diagnosed with focal drug-resistant epilepsy (DRE) and contains transient bursts of pathological activity. This activity disrupts performances on cognitive tasks and can distort findings from human neurophysiology studies. In addition to manual marking by a trained expert, numerous IED detectors have been developed to identify these pathological events. Even so, the versatility and usefulness of these detectors is limited by training on small datasets, incomplete performance metrics, and lack of generalizability to iEEG. Here, we employed a large annotated public iEEG dataset from two institutions to train a random forest classifier (RFC) to distinguish data segments as either 'non-cerebral artifact' (n = 73,902), 'pathological activity' (n = 67,797), or 'physiological activity' (n = 151,290). We found our model performed with an accuracy of 0.941, specificity of 0.950, sensitivity of 0.908, precision of 0.911, and F1 score of 0.910, averaged across all three event types. We extended the generalizability of our model to continuous bipolar data collected in a task-state at a different institution with a lower sampling rate and found our model performed with an accuracy of 0.789, specificity of 0.806, and sensitivity of 0.742, averaged across all three event types. Additionally, we created a custom graphical user interface to implement our classifier and enhance usability.


Assuntos
Artefatos , Eletroencefalografia , Humanos , Eletrocorticografia , Neurofisiologia , Cognição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa