Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 826-832, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39218610

RESUMO

Prolonged disorders of consciousness (pDOC) are pathological conditions of alterations in consciousness caused by various severe brain injuries, profoundly affecting patients' life ability and leading to a huge burden for both the family and society. Exploring the mechanisms underlying pDOC and accurately assessing the level of consciousness in the patients with pDOC provide the basis of developing therapeutic strategies. Research of non-invasive functional neuroimaging technologies, such as functional magnetic resonance (fMRI) and scalp electroencephalography (EEG), have demonstrated that the generation, maintenance and disorders of consciousness involve functions of multiple cortical and subcortical brain regions, and their networks. Invasive intracranial neuroelectrophysiological technique can directly record the electrical activity of subcortical or cortical neurons with high signal-to-noise ratio and spatial resolution, which has unique advantages and important significance for further revealing the brain function and disease mechanism of pDOC. Here we reviewed the current progress of pDOC research based on two intracranial electrophysiological signals, spikes reflecting single-unit activity and field potential reflecting multi-unit activities, and then discussed the current challenges and gave an outlook on future development, hoping to promote the study of pathophysiological mechanisms related to pDOC and provide guides for the future clinical diagnosis and therapy of pDOC.


Assuntos
Transtornos da Consciência , Eletroencefalografia , Humanos , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Lesões Encefálicas/fisiopatologia , Estado de Consciência/fisiologia
2.
Neuroimage ; 277: 120211, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385393

RESUMO

Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model to reduce the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as resting state functional connectivity derived from functional magnetic resonance imaging, into MVAR model estimation using a weighted group least absolute shrinkage and selection operator (LASSO) regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al (Neuroimage 254:119057, 2022) while resulting in models that are both more parsimonious and more accurate. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from intracranial electroencephalography (iEEG) data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach allows accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state.


Assuntos
Eletrocorticografia , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Eletrocorticografia/métodos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Simulação por Computador , Algoritmos , Eletroencefalografia/métodos
3.
Cereb Cortex ; 31(2): 1131-1148, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063098

RESUMO

The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.


Assuntos
Estimulação Acústica/métodos , Eletroencefalografia/métodos , Desempenho Psicomotor/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Adulto Jovem
4.
Neuroimage ; 211: 116627, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045640

RESUMO

Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, including states of largely maintained conscious experience (sleep: N1, REM; anesthesia: sedated but responsive) as well as states of substantially reduced conscious experience (sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will exhibit clear changes when transitioning into states of reduced consciousness, and (2) these changes will be similar for arousal states of comparable levels of consciousness during sleep and anesthesia. Using intracranial recordings from five adult neurosurgical patients, we compared resting state cortical functional connectivity (as measured by weighted phase lag index, wPLI) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S), and unresponsive (U)]. Analysis of alpha-band connectivity indicated a transition boundary distinguishing states of maintained and reduced conscious experience in both sleep and anesthesia. In wake states WS and WA, alpha-band wPLI within the temporal lobe was dominant. This pattern was largely unchanged in N1, REM, and S. Transitions into states of reduced consciousness N2, N3, and U were characterized by dramatic changes in connectivity, with dominant connections shifting to prefrontal cortex. Secondary analyses indicated similarities in reorganization of cortical connectivity in sleep and anesthesia. Shifts from temporal to frontal cortical connectivity may reflect impaired sensory processing in states of reduced consciousness. The data indicate that functional connectivity can serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and anesthesia.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletrocorticografia , Rede Nervosa/fisiologia , Fases do Sono/fisiologia , Inconsciência/fisiopatologia , Adulto , Anestesia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Propofol/farmacologia , Inconsciência/induzido quimicamente , Inconsciência/diagnóstico por imagem , Adulto Jovem
5.
J Neurosurg ; : 1-13, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213665

RESUMO

OBJECTIVE: Stereoelectroencephalography (SEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG findings are not in full agreement or definitively localizing, implanted SEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation. If an SOZ is eloquent, resection and ablation are both contraindicated, so identifying functional representation is crucial for therapeutic decision-making. The authors present a novel functional brain mapping technique that utilizes task-based electrophysiological changes in SEEG during behavioral tasks and test this in pediatric and adult patients. METHODS: SEEG was recorded in 20 patients with epilepsy who ranged in age from 6 to 39 years (12 female, 18 of 20 patients < 21 years of age) and underwent implanted monitoring to identify seizure onset. Each performed 1) visually cued simple repetitive movements of the hand, foot, or tongue while electromyography was recorded; and 2) simple picture-naming or verb-generation speech tasks while audio was recorded. Broadband changes in the power spectrum of the SEEG recording were compared between behavior and rest. RESULTS: Electrophysiological functional mapping of movement and/or speech areas was completed in all 20 patients. Eloquent representation was identified in both cortex and white matter and generally corresponded to classically described functional anatomical organization as well as other clinical mapping results. Robust maps of brain activity were identified in healthy brain, regions of developmental or acquired structural abnormality, and SOZs. CONCLUSIONS: Task-based electrophysiological mapping using broadband changes in the SEEG signal reliably identifies movement and speech representation in pediatric and adult epilepsy patients.

6.
Hear Res ; 444: 108972, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359485

RESUMO

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Assuntos
Córtex Auditivo , Eletroencefalografia , Humanos , Masculino , Feminino , Semântica , Estimulação Acústica , Potenciais Evocados , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
7.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798574

RESUMO

When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.

8.
Brain Struct Funct ; 228(1): 305-319, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35907987

RESUMO

The role of angular gyrus (AG) in arithmetic processing remains a subject of debate. In the present study, we recorded from the AG, supramarginal gyrus (SMG), intraparietal sulcus (IPS), and superior parietal lobule (SPL) across 467 sites in 30 subjects performing addition or multiplication with digits or number words. We measured the power of high-frequency-broadband (HFB) signal, a surrogate marker for regional cortical engagement, and used single-subject anatomical boundaries to define the location of each recording site. Our recordings revealed the lowest proportion of sites with activation or deactivation within the AG compared to other subregions of the inferior parietal cortex during arithmetic processing. The few activated AG sites were mostly located at the border zones between AG and IPS, or AG and SMG. Additionally, we found that AG sites were more deactivated in trials with fast compared to slow response times. The increase or decrease of HFB within specific AG sites was the same when arithmetic trials were presented with number words versus digits and during multiplication as well as addition trials. Based on our findings, we conclude that the prior neuroimaging findings of so-called activations in the AG during arithmetic processing could have been due to group-based analyses that might have blurred the individual anatomical boundaries of AG or the subtractive nature of the neuroimaging methods in which lesser deactivations compared to the control condition have been interpreted as "activations". Our findings offer a new perspective with electrophysiological data about the engagement of AG during arithmetic processing.


Assuntos
Conceitos Matemáticos , Resolução de Problemas , Humanos , Resolução de Problemas/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
9.
Neuron ; 111(13): 2105-2118.e4, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105171

RESUMO

Vowels, a fundamental component of human speech across all languages, are cued acoustically by formants, resonance frequencies of the vocal tract shape during speaking. An outstanding question in neurolinguistics is how formants are processed neurally during speech perception. To address this, we collected high-density intracranial recordings from the human speech cortex on the superior temporal gyrus (STG) while participants listened to continuous speech. We found that two-dimensional receptive fields based on the first two formants provided the best characterization of vowel sound representation. Neural activity at single sites was highly selective for zones in this formant space. Furthermore, formant tuning is adjusted dynamically for speaker-specific spectral context. However, the entire population of formant-encoding sites was required to accurately decode single vowels. Overall, our results reveal that complex acoustic tuning in the two-dimensional formant space underlies local vowel representations in STG. As a population code, this gives rise to phonological vowel perception.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala , Fonética , Percepção Auditiva
10.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993248

RESUMO

Modulating brain oscillations has strong therapeutic potential. However, commonly used non-invasive interventions such as transcranial magnetic or direct current stimulation have limited effects on deeper cortical structures like the medial temporal lobe. Repetitive audio-visual stimulation, or sensory flicker, modulates such structures in mice but little is known about its effects in humans. Using high spatiotemporal resolution, we mapped and quantified the neurophysiological effects of sensory flicker in human subjects undergoing presurgical intracranial seizure monitoring. We found that flicker modulates both local field potential and single neurons in higher cognitive regions, including the medial temporal lobe and prefrontal cortex, and that local field potential modulation is likely mediated via resonance of involved circuits. We then assessed how flicker affects pathological neural activity, specifically interictal epileptiform discharges, a biomarker of epilepsy also implicated in Alzheimer's and other diseases. In our patient population with focal seizure onsets, sensory flicker decreased the rate interictal epileptiform discharges. Our findings support the use of sensory flicker to modulate deeper cortical structures and mitigate pathological activity in humans.

11.
Cogn Neurosci ; 13(3-4): 212-214, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209434

RESUMO

Recent studies suggest the hippocampus is involved in working memory (WM). Slotnick (this issue) critically reviewed relevant fMRI findings and concludes WM 'does not activate the hippocampus.' We extend Slotnick's review by discussing observations from human intracranial and lesion research. These studies do suggest hippocampal contributions to WM (beyond novelty encoding), which however are difficult to capture with conventional fMRI. Still, the advent of new fMRI techniques combined with a stronger emphasis on shared hippocampal mechanisms across short- and long-term memory pave an exciting path forward.


Assuntos
Hipocampo , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Memória de Longo Prazo , Imageamento por Ressonância Magnética/métodos
12.
Cell Rep ; 40(12): 111395, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130515

RESUMO

Context shapes our perception of facial expressions during everyday social interactions. We interpret a person's face in a hostile situation negatively and judge the same face under pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-specific framing to resolve ambiguity and guide our interpersonal behavior. This context-specific modulation of facial expression is thought to engage the amygdala, hippocampus, and orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use human intracranial electroencephalograms (EEGs) directly recorded from these regions and report bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating contextual processing. Contextual information is subsequently represented in the orbitofrontal cortex, where a theta phase shift binds context and face associations within theta cycles, endowing faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as mediating associations between context and face processing, supporting flexible social behavior.


Assuntos
Reconhecimento Facial , Imageamento por Ressonância Magnética , Tonsila do Cerebelo , Emoções , Expressão Facial , Humanos , Imageamento por Ressonância Magnética/métodos
13.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720644

RESUMO

Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, 'wake-like' EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.


Electroencephalogram (EEG for short) is a widespread technique that helps to monitor the electrical activity of the brain. In particular, it can be used to examine, recognize and compare different states of brain consciousness such as sleep, wakefulness or general anesthesia. Yet, during rapid eye movement sleep (the sleep phase in which dreaming occurs), the electrical activity of the brain is similar to the one recorded during wakefulness, making it difficult to distinguish these states based on EEG alone. EEG records brain activity in the shape of rhythmic waves whose frequency, shape and amplitude vary depending on the state of consciousness. In the EEG signal from the human brain, the higher frequency waves are weaker than the low-frequency waves: a measure known as spectral slope reflects the degree of this difference in the signal strength. Previous research suggests that spectral slope can be used to distinguish wakefulness from anesthesia and non-REM sleep. Here, Lendner et al. explored whether certain elements of the spectral slope could also discern wakefulness from all states of reduced arousal. EEG readings were taken from patients and volunteers who were awake, asleep or under anesthesia, using electrodes placed either on the scalp or into the brain. Lendner et al. found that the spectral slope could distinguish wakefulness from anesthesia, deep non-REM and REM sleep. The changes in the spectral slope during sleep could accurately track the degree of arousal with great temporal precision and across a wide range of time scales. This method means that states of consciousness can be spotted just from a scalp EEG. In the future, this approach could be embedded into the techniques used for monitoring sleep or anesthesia during operations; it could also be harnessed to monitor other low-response states, such as comas.


Assuntos
Anestesia , Nível de Alerta/fisiologia , Propofol , Fases do Sono/fisiologia , Sono REM/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Handb Clin Neurol ; 129: 225-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25726272

RESUMO

This chapter provides an overview of current invasive recording methodology and experimental paradigms used in the studies of human auditory cortex. Invasive recordings can be obtained from neurosurgical patients undergoing clinical electrophysiologic evaluation for medically refractory epilepsy or brain tumors. This provides a unique research opportunity to study the human auditory cortex with high resolution both in time (milliseconds) and space (millimeters) and to generate valuable information about its organization and function. A historic overview presents the development of the experimental approaches from the pioneering works of Wilder Penfield to modern day. Practical issues regarding research subject population, stimulus presentation, data collection, and analysis are discussed for acute (intraoperative) and chronic experiments. Illustrative examples are provided from experimental paradigms, including studies of spectrotemporal processing, functional connectivity, and functional lesioning in human auditory cortex.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Eletrofisiologia , Estimulação Acústica , Percepção Auditiva , Humanos
16.
Front Hum Neurosci ; 4: 46, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20577584

RESUMO

In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS) in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis and the brain symptomatogenic zones in patients with epilepsy. We discuss some fundamental concepts, issues, and remaining questions that have defined the field of EBS, and review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa