Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 21(6): 430-450, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255230

RESUMO

Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin-mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin-associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N-terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME-deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony-sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)-dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin-independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild-type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1-dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT-dependent trafficking on endocytic recycling and the PM.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação Fúngica da Expressão Gênica , Transporte Proteico/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Traffic ; 21(1): 76-93, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854087

RESUMO

The late endosomes/endo-lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA-containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann-Pick C. Then, the roles of intralumenal membranes in endo-lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra-endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo-lysosomes.


Assuntos
Endossomos , Corpos Multivesiculares , Animais , Colesterol , Endocitose , Lisofosfolipídeos , Lisossomos
3.
Semin Cell Dev Biol ; 74: 4-10, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28797838

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is composed of five multi-subunit protein complexes, which act cooperatively at specialized endosomes to facilitate the movement of specific cargoes from the limiting membrane into vesicles that bud into the endosome lumen. Over the past decade, numerous proteins, lipids, and RNAs have been shown to be incorporated into intralumenal vesicles (ILVs), but the mechanisms by which these unique cargoes are captured are only now becoming better understood. Here, we discuss the potential roles that the ESCRT machinery plays during cargo sorting at multivesicular endosomes (MVEs).


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Animais , Transporte Biológico , Humanos
4.
Crit Rev Biochem Mol Biol ; 49(3): 242-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24456136

RESUMO

The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Animais , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Humanos , Modelos Moleculares , Transporte Proteico , Ubiquitina/metabolismo
5.
mBio ; 13(6): e0296122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409075

RESUMO

Anaplasma phagocytophilum is the etiologic agent of the emerging infection, granulocytic anaplasmosis. This obligate intracellular bacterium lives in a host cell-derived vacuole that receives membrane traffic from multiple organelles to fuel its proliferation and from which it must ultimately exit to disseminate infection. Understanding of these essential pathogenic mechanisms has remained poor. Multivesicular bodies (MVBs) are late endosomal compartments that receive biomolecules from other organelles and encapsulate them into intralumenal vesicles (ILVs) using endosomal sorting complexes required for transport (ESCRT) machinery and ESCRT-independent machinery. Association of the ESCRT-independent protein, ALIX, directs MVBs to the plasma membrane where they release ILVs as exosomes. We report that the A. phagocytophilum vacuole (ApV) is acidified and enriched in lysobisphosphatidic acid, a lipid that is abundant in MVBs. ESCRT-0 and ESCRT-III components along with ALIX localize to the ApV membrane. siRNA-mediated inactivation of ESCRT-0 and ALIX together impairs A. phagocytophilum proliferation and infectious progeny production. RNA silencing of ESCRT-III, which regulates ILV scission, pronouncedly reduces ILV formation in ApVs and halts infection by arresting bacterial growth. Rab27a and its effector Munc13-4, which drive MVB trafficking to the plasma membrane and subsequent exosome release, localize to the ApV. Treatment with Nexinhib20, a small molecule inhibitor that specifically targets Rab27a to block MVB exocytosis, abrogates A. phagocytophilum infectious progeny release. Thus, A. phagocytophilum exploits MVB biogenesis and exosome release to benefit each major stage of its intracellular infection cycle: intravacuolar growth, conversion to the infectious form, and exit from the host cell. IMPORTANCE Anaplasma phagocytophilum causes granulocytic anaplasmosis, a globally emerging zoonosis that can be severe, even fatal, and for which antibiotic treatment options are limited. A. phagocytophilum lives in an endosomal-like compartment that interfaces with multiple organelles and from which it must ultimately exit to spread within the host. How the bacterium accomplishes these tasks is poorly understood. Multivesicular bodies (MVBs) are intermediates in the endolysosomal pathway that package biomolecular cargo from other organelles as intralumenal vesicles for release at the plasma membrane as exosomes. We discovered that A. phagocytophilum exploits MVB biogenesis and trafficking to benefit all aspects of its intracellular infection cycle: proliferation, conversion to its infectious form, and release of infectious progeny. The ability of a small molecule inhibitor of MVB exocytosis to impede A. phagocytophilum dissemination indicates the potential of this pathway as a novel host-directed therapeutic target for granulocytic anaplasmosis.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Proliferação de Células , Corpos Multivesiculares , Biogênese de Organelas , Animais , Anaplasma phagocytophilum/patogenicidade , Anaplasma phagocytophilum/fisiologia , Anaplasmose/metabolismo , Anaplasmose/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico
6.
F1000Res ; 4(F1000 Faculty Rev): 516, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339479

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) collectively comprise a machinery that was first known for its function in the degradation of transmembrane proteins in the endocytic pathway of eukaryotic cells. Since their discovery, however, ESCRTs have been recognized as playing important roles at the plasma membrane, which appears to be the original site of function for the ESCRT machinery. This article reviews some of the major research findings that have shaped our current understanding of how the ESCRT machinery controls membrane dynamics and considers new roles for the ESCRT machinery that might be driven by these mechanisms.

7.
Trends Cell Biol ; 24(1): 19-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287454

RESUMO

In yeast and mammalian cells, endosomal sorting complexes required for transport (ESCRT) assist in sorting ubiquitinated proteins into intralumenal vesicles (ILVs) of multivesicular endosomes (MVEs) for degradation in the lysosome/vacuole. In mammalian cells, ESCRTs also drive other topologically identical membrane deformation processes, including cytokinesis, exosome release, and virus budding. Although the ESCRT-associated protein ALIX regulates these mammalian cell-specific functions, it was believed to be dispensable for receptor sorting into ILVs, unlike its yeast homolog Bro1. Despite these differences, recent evidence suggests ALIX and Bro1 share common properties in cargo sorting and ILV formation. We review these commonalities and discuss the role of ALIX in operating 'behind the mirror' during ILV back-fusion with the limiting membrane. We also propose models of how ALIX and some ESCRTs regulate the back-fusion process.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Corpos Multivesiculares/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/fisiologia , Vesículas Transportadoras/metabolismo , Proteínas Ubiquitinadas/metabolismo
8.
Commun Integr Biol ; 5(1): 50-6, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22482010

RESUMO

Vesicle-mediated cargo transport within the endomembrane system requires precise coordination between adaptor molecules, which recognize sorting signals on substrates, and factors that promote changes in membrane architecture. At endosomal compartments, a set of protein complexes collectively known as the ESCRT machinery sequesters transmembrane cargoes that harbor a ubiquitin modification and packages them into vesicles that bud into the endosome lumen. Several models have been postulated to describe this process. However, consensus in the field remains elusive. Here, we discuss recent findings regarding the structure and function of the ESCRT machinery, highlighting specific roles for ESCRT-0 and ESCRT-III in regulating cargo selection and vesicle formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa