Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2352-2359, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345565

RESUMO

Ion-selective membrane has broad application in various fields, while the present solution-processed techniques can only prepare uniform membrane with microscale thickness. Herein, a high-quality polymer membrane with nanoscale thickness and uniformity is precisely prepared by controlling solution spreading and solvent evaporation stability/rate. With the arrayed capillaries, the stable spreading of polymer solution with volume of microliter induces the formation of solution film with micrometers thickness. Moreover, the fast increase of solution dynamic viscosity during solvent evaporation inhibits nonuniform Marangoni flow and capillary flow in solution film. Consequently, the uniform Nafion-Li membranes with ∼200 nm thickness are prepared, while their Li+ conductivity is 2 orders of magnitude higher than that of commercially Nafion-117 membrane. Taking lithium-sulfur battery as a model device, the cells (capacities of 8-10 mAh cm-2) can stably operate for 150 cycles at a S loading of 12 mg cm-2 and an electrolyte/sulfur ratio of ∼7.

2.
Angew Chem Int Ed Engl ; 63(35): e202408375, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38847272

RESUMO

Designing a nanofluidic membrane with high selectivity and fast ion transport property is the key towards high-performance osmotic energy conversion. However, most of reported membranes can produce power density less than commercial benchmark (5 W/m2), due to the imbalance between ion selectivity and permeability. Here, we report a novel nanoarchitectured design of a heterogeneous membrane with an ultrathin and dense zirconium-based UiO-66-NH2 metal-organic framework (MOF) layer and a highly aligned and interconnected branched alumina nanochannel membrane. The design leads to a continuous trilayered pore structure of large geometry gradient in the sequence from angstrom-scale to nano-scale to sub-microscale, which enables the enhanced directional ion transport, and the angstrom-sized (~6.6-7 Å) UiO-66-NH2 windows render the membrane with high ion selectivity. Consequently, the novel heterogeneous membrane can achieve a high-performance power of ~8 W/m2 by mixing synthetic seawater and river water. The power density can be largely upgraded to an ultrahigh ~17.1 W/m2 along with ~48.5 % conversion efficiency at a 50-fold KCl gradient. This work not only presents a new membrane design approach but also showcases the great potential of employing the zirconium-based MOF channels as ion-channel-mimetic membranes for highly efficient blue energy harvesting.

3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139093

RESUMO

The multifunctionality of an A3B mixed-substituted porphyrin, namely 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl)porphyrin (5-COOH-3MPP), was proven due to its capacity to detect procaine by different methods, depending on the polymer matrix in which it is incorporated. The hybrid nanomaterial containing k-carrageenan and AuNPs (5-COOH-3MPP-k-carrageenan-AuNPs) was able to optically detect procaine in the concentration range from 5.76 × 10-6 M to 2.75 × 10-7 M, with a limit of detection (LOD) of 1.33 × 10-7 M. This method for the detection of procaine gave complementary results to the potentiometric one, which uses 5-COOH-3MPP as an electroactive material incorporated in a polyvinylchloride (PVC) membrane plasticized with o-NPOE. The detected concentration range by this ion-selective membrane electrode is wider (enlarged in the field of higher concentrations from 10-2 to 10-6 M), linearly dependent with a 53.88 mV/decade slope, possesses a detection limit of 7 × 10-7 M, a response time of 60 s, and has a certified stability for a working period of six weeks.


Assuntos
Nanopartículas Metálicas , Porfirinas , Procaína , Carragenina , Ouro , Eletrodos Seletivos de Íons
4.
Angew Chem Int Ed Engl ; 62(26): e202303582, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37010943

RESUMO

The design of ion-selective membranes is the key towards efficient reverse electrodialysis-based osmotic power conversion. The tradeoff between ion selectivity (output voltage) and ion permeability (output current) in existing porous membranes, however, limits the upgradation of power generation efficiency for practical applications. Thus, we provide the simple guidelines based on fundamentals of ion transport in nanofluidics for promoting osmotic power conversion. In addition, we discuss strategies for optimizing membrane performance through analysis of various material parameters in membrane design, such as pore size, surface charge, pore density, membrane thickness, ion pathway, pore order, and ionic diode effect. Lastly, a perspective on the future directions of membrane design to further maximize the efficiency of osmotic power conversion is outlined.


Assuntos
Permeabilidade , Transporte de Íons , Porosidade
5.
Environ Sci Technol ; 56(8): 4905-4914, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35274533

RESUMO

Accurate and continuous monitoring of soil nitrogen is critical for determining its fate and providing early warning for swift soil nutrient management. However, the accuracy of existing electrochemical sensors is hurdled by the immobility of targeted ions, ion adsorption to soil particles, and sensor reading noise and drifting over time. In this study, polyacrylamide hydrogel with a thickness of 0.45 µm was coated on the surface of solid-state ion-selective membrane (S-ISM) sensors to absorb water contained in soil and, consequently, enhance the accuracy (R2 > 0.98) and stability (drifting < 0.3 mV/h) of these sensors monitoring ammonium (NH4+) and nitrate (NO3-) ions in soil. An ion transport model was built to simulate the long-term NH4+ dynamic process (R2 > 0.7) by considering the soil adsorption process and soil complexity. Furthermore, a soil-based denoising data processing algorithm (S-DDPA) was developed based on the unique features of soil sensors including the nonlinear mass transfer and ion diffusion on the heterogeneous sensor-hydrogel-soil interface. The 14 day tests using real-world soil demonstrated the effectiveness of S-DDPA to eliminate false signals and retrieve the actual soil nitrogen information for accurate (error: <2 mg/L) and continuous monitoring.


Assuntos
Compostos de Amônio , Nitrogênio , Hidrogéis , Nitratos/análise , Nitrogênio/análise , Solo
6.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236234

RESUMO

Monitoring glucose levels is important not only for diabetics, but also for tracking embryonic development in human embryo culture media. In this study, an optochemical sensor (glucose-selective polymer membrane) was fabricated for the determination of glucose in serum from diabetic patients and the culture media of human embryos. The optode membranes were formulated using polyvinyl chloride (PVC) as the polymer matrix and 4',5'-dibromofluorescein octadecyl ester (ETH 7075) as the chromoionophore. The sensitivity of the optode membranes was optimized using two different plasticizers (tricresyl phosphate-TCP and nitrophenyloctyl ether-NOPE) and three ionophores (nitrophenylboronic acid-NPBA, trifluorophenyboronic acid-TFPBA, 4'-nitrobenzo-15-crown-5) and tested for glucose detection. The best optode membrane was formulated from 49.5% PVC, 49.5% TCP, 1% NPBA, and 1% ETH 7075. It showed a linear dynamic range of 10-3 M to 10-1 M, with a detection limit of 9 × 10-4 M and a response time of 2 min. The detection mechanism involves H-bonding between NPBA and glucose, which was confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR). The reaction also involves the formation of boronate esters in basic media with deprotonation of the chromoionophore (ETH 7075), leading to a decrease in UV-Vis absorbance at λmax = 530 nm. The membrane optode was used for glucose determination in synthetic culture medium, commercial embryo culture medium (GLOBAL® TOTAL® W/HEPES), and serum from normal and diabetic patients, showing good accuracy and precision of the optode.


Assuntos
Diabetes Mellitus , Tritolil Fosfatos , Glicemia , Automonitorização da Glicemia , Ácidos Borônicos , Meios de Cultura , Ésteres , Éteres , HEPES , Humanos , Ionóforos/química , Membranas Artificiais , Plastificantes/química , Cloreto de Polivinila/química
7.
Sensors (Basel) ; 22(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684715

RESUMO

Plant-available nitrogen, often in the form of nitrate, is an essential nutrient for plant growth. However, excessive nitrate in the environment and watershed has harmful impacts on natural ecosystems and consequently human health. A distributed network of nitrate sensors could help to quantify and monitor nitrogen in agriculture and the environment. Here, we have developed fully printed potentiometric nitrate sensors and characterized their sensitivity and selectivity to nitrate. Each sensor comprises an ion-selective electrode and a reference electrode that are functionalized with polymeric membranes. The sensitivity of the printed ion-selective electrodes was characterized by measuring their potential with respect to a commercial silver/silver chloride reference electrode in varying concentrations of nitrate solutions. The sensitivity of the printed reference electrodes to nitrate was minimized with a membrane containing polyvinyl butyral (PVB), sodium chloride, and sodium nitrate. Selectivity studies with sulphate, chloride, phosphate, nitrite, ammonium, calcium, potassium, and magnesium showed that high concentrations of calcium can influence sensor behavior. The printed ion-selective and reference electrodes were combined to form a fully printed sensor with sensitivity of -48.0 ± 3.3 mV/dec between 0.62 and 6200 ppm nitrate in solution and -47 ± 4.1 mV/dec in peat soil.


Assuntos
Nitratos , Solo , Cálcio/análise , Ecossistema , Humanos , Eletrodos Seletivos de Íons , Nitrogênio
8.
Anal Bioanal Chem ; 413(25): 6201-6212, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468795

RESUMO

Laser-induced graphene (LIG) has shown to be a scalable manufacturing route to create graphene electrodes that overcome the expense associated with conventional graphene electrode fabrication. Herein, we expand upon initial LIG reports by functionalizing the LIG with metallic nanoparticles for ion sensing, pesticide monitoring, and water splitting. The LIG electrodes were converted into ion-selective sensors by functionalization with poly(vinyl chloride)-based membranes containing K+ and H+ ionophores. These ion-selective sensors exhibited a rapid response time (10-15 s), near-Nernstian sensitivity (53.0 mV/dec for the K+ sensor and - 56.6 mV/pH for the pH sensor), and long storage stability for 40 days, and were capable of ion monitoring in artificial urine. The pesticide biosensors were created by functionalizing the LIG electrodes with the enzyme horseradish peroxidase and displayed a high sensitivity to atrazine (28.9 nA/µM) with negligible inference from other common herbicides (glyphosate, dicamba, and 2,4-dichlorophenoxyacetic acid). Finally, the LIG electrodes also exhibited a small overpotential for hydrogen evolution reaction and oxygen evolution reaction. The oxygen evolution reaction tests yielded overpotentials of 448 mV and 995 mV for 10 mA/cm2 and 100 mA/cm2, respectively. The hydrogen evolution reaction tests yielded 35 mV and 281 mV for the corresponding current densities. Such a versatile LIG platform paves the way for simple, efficient electrochemical sensing and energy harvesting applications.

9.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435196

RESUMO

All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the use of synthesized imprinted bio-mimics as a selective material for this recognition. The imprinted receptors were synthesized using acrylamide (AA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The polymerization process was carried out at 70 °C in the presence of dibenzoyl peroxide (DBO) as an initiator. The sensing membrane in addition to the solid-contact layer was applied to a glassy-carbon disc as an electronic conductor. All performance characteristics of the presented electrode in terms of linearity, detection limit, pH range, response time and selectivity were evaluated. The sensor revealed a wide linearity over the range 2.0 × 10-7-1.0 × 10-2 M, with a detection limit of 0.02 µg/mL and a sensitivity slope of 59.2 ± 0.8 mV/hamine concentration decade. A 40 mM Britton-Robinson (BR) buffer solution at pH of 6 was used for all harmine measurements. The electrode showed good selectivity towards harmine over other common interfering ions, and maintained a stable electrochemical response over two weeks. After applying the validation requirements, the proposed method revealed good performance characteristics. Method precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty were also evaluated. These analytical capabilities support the fast and direct assessment of harmine in different urine specimens. The analytical results were compared with the standard liquid chromatographic method. The results obtained demonstrated that PEDOT/PSS was a promising solid-contact ion-to-electron transducer material in the development of harmine-ISE. The electrodes manifested enhanced stability and low cost, which provides a wide number of potential applications for pharmaceutical and forensic analysis.


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais , Alucinógenos , Harmina , Compostos Bicíclicos Heterocíclicos com Pontes/química , Alucinógenos/análise , Alucinógenos/urina , Harmina/análise , Harmina/urina , Humanos , Metacrilatos/química , Polímeros/química , Potenciometria
10.
Environ Res ; 189: 109891, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32979997

RESUMO

Potassium ions (K+) present in wastewater has caused severe interference for NH4+ monitoring, over-estimation of NH4+ concentration and ultimately leads to extra energy consumption. Past effort for enhancing the selectivity of NH4+ over K+ were oftentimes complex, costly, or compromised the selectivity and accuracy of the NH4+ ion selective membrane (ISM) sensors. This study targeted this imminent challenge by developing an integrated NH4+/K+ auto-correction solid-state ISM (S-ISM) sensor assembly combined with a data-driven model to monitor [NH4+] under different [NH4+] and [K+] concentrations. The results showed that the interference of K+ was substantially alleviated for NH4+ measurement. The accuracy was enhanced by over 70% when examined using real wastewater and energy consumption was expected to reduce by 26% for a wastewater treatment plant, especially for wastewater with high [K+]. Furthermore, the uniquely structured S-ISMs were made by embedding the ionophores in a robust polyvinyl chloride (PVC) matrix containing plasticizers and a layer of carbon nanotubes (CNT) as ion-to-electron transducer, which maintained the selectivity and accuracy of the S-ISM sensor for 4 weeks in wastewater. NH4+/K+ sensor assembly integrated with data-driven correction models poses great potential in high-efficiency and energy-saving wastewater treatment and water reuse processes.


Assuntos
Nanotubos de Carbono , Águas Residuárias , Íons , Cloreto de Polivinila , Potássio
11.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630098

RESUMO

We developed ion-selective field-effect transistor (FET) sensors with floating electrodes for the monitoring of the potassium ion release by the stimulation of nicotinic acetylcholine receptors (nAChRs) on PC12 cells. Here, ion-selective valinomycin-polyvinyl chloride (PVC) membranes were coated on the floating electrode-based carbon nanotube (CNT) FETs to build the sensors. The sensors could selectively measure potassium ions with a minimum detection limit of 1 nM. We utilized the sensor for the real-time monitoring of the potassium ion released from a live cell stimulated by nicotine. Notably, this method also allowed us to quantitatively monitor the cell responses by agonists and antagonists of nAChRs. These results suggest that our ion-selective CNT-FET sensor has potential uses in biological and medical researches such as the monitoring of ion-channel activity and the screening of drugs.


Assuntos
Células Cromafins/efeitos dos fármacos , Nanotubos de Carbono , Preparações Farmacêuticas , Receptores Nicotínicos/metabolismo , Animais , Eletrodos , Nicotina/farmacologia , Células PC12 , Potássio/metabolismo , Ratos
12.
Sensors (Basel) ; 19(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212895

RESUMO

We have investigated human-stress monitoring by making use of salivary nitrate, which can be a candidate for stress markers, with ion-selective field-effect transistors (ISFETs). ISFETs are suitable for on-site single-drop analysis of salivary nitrate within 10 s. However, when ISFETs are used for salivary nitrate, ISFETs have a problem that is called the initial drift. The initial drift makes accurate nitrate monitoring difficult. Thus, the purpose of this study is to prevent the initial drift and to search for a new, simple polymer to possess a better performance of sensor responses than conventional matrix membranes, such as PVC. In this research, we investigated ISFETs using specific matrix membranes, for example KP-13, Pellethane®--, and P7281-PU. The initial drift was evaluated from the fluctuations of the response values generated by the ISFETs when immersed in saliva or aqueous solution. As a result, P7281-PU showed a prevention effect on the initial drift, both in the whole saliva and in various solutions. Furthermore, the cause of drift may be H+ diffusion, and the drift prevention effect of P7281-PU may be affected by urethane bond capturing H+ in the ion-selective membrane. This result suggests that a continuous nitrate monitoring is feasible and may be applied to wearable sensors.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais , Nitratos/isolamento & purificação , Saliva/química , Humanos , Monitorização Fisiológica/métodos , Nitratos/química , Polímeros/química , Poliuretanos/química , Estresse Fisiológico , Transistores Eletrônicos , Água/química , Dispositivos Eletrônicos Vestíveis
13.
Sensors (Basel) ; 19(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086067

RESUMO

Mercury ion selective membrane (Hg-ISM) coated extended gate Field Effect transistors (ISM-FET) were used to manifest a novel methodology for ion-selective sensors based on FET's, creating ultra-high sensitivity (-36 mV/log [Hg2+]) and outweighing ideal Nernst sensitivity limit (-29.58 mV/log [Hg2+]) for mercury ion. This highly enhanced sensitivity compared with the ion-selective electrode (ISE) (10-7 M) has reduced the limit of detection (10-13 M) of Hg2+ concentration's magnitude to considerable orders irrespective of the pH of the test solution. Systematical investigation was carried out by modulating sensor design and bias voltage, revealing that higher sensitivity and a lower detection limit can be attained in an adequately stronger electric field. Our sensor has a limit of detection of 10-13 M which is two orders lower than Inductively Coupled Plasma Mass Spectrometry (ICP-MS), having a limit of detection of 10-11 M. The sensitivity and detection limit do not have axiomatic changes under the presence of high concentrations of interfering ions. The technology offers economic and consumer friendly water quality monitoring options intended for homes, offices and industries.

14.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035499

RESUMO

Chromium, one of the top five toxic heavy metals ranked according to significance in public health by WHO, exists as Cr(III) which is naturally occurring or Cr(VI) which is anthropogenic in origin. The EPA specifies the maximum contaminant level in drinking water to be 10-6 M or 0.1 mg/L or 100 ppb for the total dissolved Cr. To ensure the water consumed by the population has these pollutants below the safe threshold, this report demonstrates a field effect transistor (FET) based sensor design incorporating a highly target specific ion-selective membrane combined with extended gate technology which manifests sensitivity exceeding the Nernst limit aided by the high field effect in the short gap region of extended gate technology. Characterization and repeated testing of the portable device revealed a commendable calibration sensitivity of 99 mV/log [Cr3+] and 71 mV/log [Cr6+] for Cr(III) and Cr(VI) respectively, well surpassing the Nernst limits of sensitivity and offering a detection limit lower than ion-selective electrodes (10-6 M), and comparable to the expensive benchtop laboratory instrument, ICP-MS. This report presents a robust, easy to fabricate, economic and efficient handheld biosensor to detect the chromium in a liquid sample whether it exists as Cr(III) or Cr(VI).

15.
Sensors (Basel) ; 18(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751498

RESUMO

Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10−4 to 10−2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.

16.
Electrophoresis ; 38(20): 2592-2602, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28726313

RESUMO

Selectivity against mutant nontargets with a few mismatches remains challenging in nucleic acid sensing. Sensitivity enhancement by analyte concentration does not improve selectivity because it affects targets and nontargets equally. Hydrodynamic or electrical shear enhanced selectivity is often accompanied by substantial losses in target signals, thereby leading to poor limits of detection. We introduce a platform based on depletion isotachophoresis in agarose gel generated by an ion-selective membrane that allows both selectivity and sensitivity enhancement with a two-step assay involving concentration polarization at an ion-selective membrane. By concentrating both the targets and probe-functionalized nanoparticles by ion enrichment at the membrane, the effective thermodynamic dissociation constant is lowered from 40 nM to below 500 pM, and the detection limit is 10 pM as reported previously. A dynamically optimized ion depletion front is then generated from the membrane with a high electrical shear force to selectively and irreversibly dehybridize nontargets. The optimized selectivity against a two-mismatch nontarget (in a 35-base pairing sequence) is shown to be better than the thermodynamic equilibrium selectivity by more than a hundred-fold, such that there is no detectable signal from the two-mismatch nontarget. We offer empirical evidence that irreversible cooperative dehybridization plays an important role in this kinetic selectivity enhancement and that mismatch location controls the optimum selectivity even when there is little change in the corresponding thermodynamic dissociation constant.


Assuntos
DNA/análise , Eletroforese em Microchip/instrumentação , Ouro/química , Isotacoforese/métodos , Nanopartículas Metálicas/química , Pareamento Incorreto de Bases , Géis , Humanos , Isotacoforese/instrumentação , Cinética , Tamanho da Partícula , Sensibilidade e Especificidade , Sefarose , Propriedades de Superfície , Termodinâmica
17.
Nano Lett ; 15(9): 5724-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26237233

RESUMO

Redox flow batteries (RFBs) present unique opportunities for multi-hour electrochemical energy storage (EES) at low cost. Too often, the barrier for implementing them in large-scale EES is the unfettered migration of redox active species across the membrane, which shortens battery life and reduces Coulombic efficiency. To advance RFBs for reliable EES, a new paradigm for controlling membrane transport selectivity is needed. We show here that size- and ion-selective transport can be achieved using membranes fabricated from polymers of intrinsic microporosity (PIMs). As a proof-of-concept demonstration, a first-generation PIM membrane dramatically reduced polysulfide crossover (and shuttling at the anode) in lithium-sulfur batteries, even when sulfur cathodes were prepared as flowable energy-dense fluids. The design of our membrane platform was informed by molecular dynamics simulations of the solvated structures of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) vs lithiated polysulfides (Li2Sx, where x = 8, 6, and 4) in glyme-based electrolytes of different oligomer length. These simulations suggested polymer films with pore dimensions less than 1.2-1.7 nm might incur the desired ion-selectivity. Indeed, the polysulfide blocking ability of the PIM-1 membrane (∼0.8 nm pores) was improved 500-fold over mesoporous Celgard separators (∼17 nm pores). As a result, significantly improved battery performance was demonstrated, even in the absence of LiNO3 anode-protecting additives.

18.
Adv Mater ; 36(35): e2404418, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973652

RESUMO

Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting. In this review, ion diffusion in confined nanochannels and the rational design and optimization of membrane architecture are explored. Furthermore, structural optimization of the membrane to mitigate transport resistance and the concentration polarization effect for enhancing osmotic energy harvesting is highlighted. Finally, an outlook on the challenges that lie ahead is provided, and the potential applications of osmotic energy conversion are outlined. This review offers a comprehensive viewpoint on the evolving prospects of osmotic energy conversion.

19.
ACS Nano ; 18(9): 7161-7169, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380884

RESUMO

Engineered asymmetric heterogeneous ion-selective membranes have become a focal point for their improved efficiency in harnessing osmotic energy from ionic solutions with varying salinity. However, achieving both energy conversion efficiency and excellent chemical stability necessitates effectively mitigating the formation of detrimental interface cracks between two different layers. We develop a charge-gradient sulfonated poly(ether ether ketone) (SPEEK) membrane (CG-SPEEK) on a large-scale using a straightforward coating method. As an osmotic energy generator, CG-SPEEK membrane achieves an impressive output power density of 9.2 W m-2 and exhibits ultrahigh cation selectivity (0.99), with an energy conversion efficiency of 48% at a 50-fold NaCl concentration gradient. The results highlight the ion diode effects of CG-SPEEK, driven by a charge density gradient that accelerates cation transport while suppressing ion concentration polarization. Density functional theory simulations provide further insights, revealing that the energy barrier for Na+ ion transport through CG-SPEEK membrane is lower than that through a homogeneous SPEEK membrane. This work not only enhances our understanding of ion transport dynamics but also establishes the CG-SPEEK membrane as a promising candidate for efficient osmotic energy conversion applications.

20.
ACS Nano ; 18(8): 6016-6027, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349043

RESUMO

Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa