Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Annu Rev Biochem ; 89: 471-499, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935115

RESUMO

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.


Assuntos
Ataxia de Friedreich/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
2.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743629

RESUMO

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37883440

RESUMO

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
4.
J Biol Chem ; 300(2): 105612, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159858

RESUMO

NCOA4 is a selective cargo receptor for ferritinophagy, the autophagic turnover of ferritin (FTH), a process critical for regulating intracellular iron bioavailability. However, how ferritinophagy flux is controlled through NCOA4 in iron-dependent processes needs to be better understood. Here, we show that the C-terminal FTH-binding domain of NCOA4 harbors a [3Fe-4S]-binding site with a stoichiometry of approximately one labile [3Fe-4S] cluster per NCOA4 monomer. By analyzing the interaction between NCOA4 and HERC2 ubiquitin ligase or NCOA4 and FTH, we demonstrate that NCOA4 regulates ferritinophagy by sensing the intracellular iron-sulfur cluster levels. Under iron-repletion conditions, HERC2 recognizes and recruits holo-NCOA4 as a substrate for polyubiquitination and degradation, favoring ferritin iron storage. Under iron-depletion conditions, NCOA4 exists in the form of apo-protein and binds ferritin to promote the occurrence of ferritinophagy and release iron. Thus, we identify an iron-sulfur cluster [3Fe-4S] as a critical cofactor in determining the fate of NCOA4 in favoring iron storage in ferritin or iron release via ferritinophagy and provide a dual mechanism for selective interaction between HERC2 and [3Fe-4S]-NCOA4 for proteasomal degradation or between ferritin and apo-NCOA4 for ferritinophagy in the control of iron homeostasis.


Assuntos
Homeostase , Ferro , Coativadores de Receptor Nuclear , Autofagia , Ferritinas/metabolismo , Ferro/química , Ferro/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Enxofre/química , Enxofre/metabolismo , Humanos , Animais , Camundongos , Domínios Proteicos , Linhagem Celular , Células Cultivadas , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade Proteica , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
J Biol Chem ; 300(8): 107503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944127

RESUMO

One of the seven natural CO2 fixation pathways, the anaerobic Wood-Ljungdahl pathway (WLP) is unique in generating CO as a metabolic intermediate, operating through organometallic intermediates, and in conserving (versus utilizing) net ATP. The key enzyme in the WLP is acetyl-CoA synthase (ACS), which uses an active site [2Ni-4Fe-4S] cluster (A-cluster), a CO tunnel, and an organometallic (Ni-CO, Ni-methyl, and Ni-acetyl) reaction sequence to generate acetyl-CoA. Here, we reveal that an alcove, which interfaces the tunnel and the A-cluster, is essential for CO2 fixation and autotrophic growth by the WLP. In vitro spectroscopy, kinetics, binding, and in vivo growth experiments reveal that a Phe229A substitution at one wall of the alcove decreases CO affinity thirty-fold and abolishes autotrophic growth; however, a F229W substitution enhances CO binding 80-fold. Our results indicate that the structure of the alcove is exquisitely tuned to concentrate CO near the A-cluster; protect ACS from CO loss during catalysis, provide a haven for inhibitory CO, and stabilize the tetrahedral coordination at the Nip site where CO binds. The directing, concentrating, and protective effects of the alcove explain the inability of F209A to grow autotrophically. The alcove also could help explain current controversies over whether ACS binds CO and methyl through a random or ordered mechanism. Our work redefines what we historically refer to as the metallocenter "active site". The alcove is so crucial for enzymatic function that we propose it is part of the active site. The community should now look for such alcoves in all "gas handling" metalloenzymes.


Assuntos
Acetato-CoA Ligase , Monóxido de Carbono , Domínio Catalítico , Níquel , Níquel/metabolismo , Níquel/química , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/química , Monóxido de Carbono/metabolismo , Monóxido de Carbono/química , Ciclo do Carbono , Anaerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química
6.
J Biol Chem ; 300(6): 107292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636659

RESUMO

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.


Assuntos
Clostridium , Hidrogênio , Hidrogenase , Proteínas Ferro-Enxofre , Oxirredução , Hidrogenase/metabolismo , Hidrogenase/química , Clostridium/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
7.
J Biol Chem ; 300(9): 107678, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151727

RESUMO

Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.

8.
J Biol Chem ; 299(9): 105075, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481209

RESUMO

Iron-sulfur clusters (ISC) are essential cofactors that participate in electron transfer, environmental sensing, and catalysis. Amongst the most ancient ISC-containing proteins are the ferredoxin (FDX) family of electron carriers. Humans have two FDXs- FDX1 and FDX2, both of which are localized to mitochondria, and the latter of which is itself important for ISC synthesis. We have previously shown that hypoxia can eliminate the requirement for some components of the ISC biosynthetic pathway, but FDXs were not included in that study. Here, we report that FDX1, but not FDX2, is dispensable under 1% O2 in cultured human cells. We find that FDX1 is essential for production of the lipoic acid cofactor, which is synthesized by the ISC-containing enzyme lipoyl synthase. While hypoxia can rescue the growth phenotype of either FDX1 or lipoyl synthase KO cells, lipoylation in these same cells is not rescued, arguing against an alternative biosynthetic route or salvage pathway for lipoate in hypoxia. Our work reveals the divergent roles of FDX1 and FDX2 in mitochondria, identifies a role for FDX1 in lipoate synthesis, and suggests that loss of lipoic acid can be tolerated under low oxygen tensions in cell culture.


Assuntos
Ferredoxinas , Lipoilação , Humanos , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ácido Tióctico/metabolismo , Hipóxia Celular/efeitos dos fármacos , Técnicas de Inativação de Genes , Oxigênio/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/genética , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Sítios de Ligação , Estabilidade Proteica , Biossíntese de Proteínas/efeitos dos fármacos
9.
J Biol Chem ; 299(5): 104701, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059186

RESUMO

To ensure proper utilization of iron and avoid its toxicity, cells are equipped with iron-sensing proteins to maintain cellular iron homeostasis. We showed previously that nuclear receptor coactivator 4 (NCOA4), a ferritin-specific autophagy adapter, intricately regulates the fate of ferritin; upon binding to Fe3+, NCOA4 forms insoluble condensates and regulates ferritin autophagy in iron-replete conditions. Here, we demonstrate an additional iron-sensing mechanism of NCOA4. Our results indicate that the insertion of an iron-sulfur (Fe-S) cluster enables preferential recognition of NCOA4 by the HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) ubiquitin ligase in iron-replete conditions, resulting in degradation by the proteasome and subsequent inhibition of ferritinophagy. We also found that both condensation and ubiquitin-mediated degradation of NCOA4 can occur in the same cell, and the cellular oxygen tension determines the selection of these pathways. Fe-S cluster-mediated degradation of NCOA4 is enhanced under hypoxia, whereas NCOA4 forms condensates and degrades ferritin at higher oxygen levels. Considering the involvement of iron in oxygen handling, our findings demonstrate that the NCOA4-ferritin axis is another layer of cellular iron regulation in response to oxygen levels.


Assuntos
Ferro , Oxigênio , Ferro/metabolismo , Oxigênio/metabolismo , Coativadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Fatores de Transcrição/metabolismo , Homeostase , Ubiquitinas/metabolismo , Autofagia
10.
J Biol Chem ; 299(9): 105058, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37460016

RESUMO

Radical S-adenosyl-L-methionine (rSAM) enzymes bind one or more Fe-S clusters and catalyze transformations that produce complex and structurally diverse natural products. One of the clusters, a 4Fe-4S cluster, binds and reductively cleaves SAM to generate the 5'-deoxyadenosyl radical, which initiates the catalytic cycle by H-atom transfer from the substrate. The role(s) of the additional auxiliary Fe-S clusters (ACs) remains largely enigmatic. The rSAM enzyme PapB catalyzes the formation of thioether cross-links between the ß-carbon of an Asp and a Cys thiolate found in the PapA peptide. One of the two ACs in the protein binds to the substrate thiol where, upon formation of a thioether bond, one reducing equivalent is returned to the protein. However, for the next catalytic cycle to occur, the protein must undergo an electronic state isomerization, returning the electron to the SAM-binding cluster. Using a series of iron-sulfur cluster deletion mutants, our data support a model whereby the isomerization is an obligatorily intermolecular electron transfer event that can be mediated by redox active proteins or small molecules, likely via the second AC in PapB. Surprisingly, a mixture of FMN and NADPH is sufficient to support both the reductive and the isomerization steps. These findings lead to a new paradigm involving intermolecular electron transfer steps in the activation of rSAM enzymes that require multiple iron-sulfur clusters for turnover. The implications of these results for the biological activation of rSAM enzymes are discussed.

11.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923140

RESUMO

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Assuntos
Antígeno 2 Relacionado a Fos , Fatores de Transcrição GATA , Glutarredoxinas , Homeostase , Proteínas Ferro-Enxofre , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
J Biol Chem ; 299(8): 105039, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442238

RESUMO

Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of dinitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at noncryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities. To demonstrate chromatography-coupled anSAXS, we investigated the oligomeric interconversions of the fumarate and nitrate reduction (FNR) transcription factor, which is responsible for the transcriptional response to changing oxygen conditions in the facultative anaerobe Escherichia coli. Previous work has shown that FNR contains a labile [4Fe-4S] cluster that is degraded when oxygen is present and that this change in cluster composition leads to the dissociation of the DNA-binding dimeric form. Using anSAXS, we provide the first direct structural evidence for the oxygen-induced dissociation of the E. coli FNR dimer and its correlation with cluster composition. We further demonstrate how complex FNR-DNA interactions can be studied by investigating the promoter region of the anaerobic ribonucleotide reductase genes, nrdDG, which contains tandem FNR-binding sites. By coupling size-exclusion chromatography-anSAXS with full-spectrum UV-Vis analysis, we show that the [4Fe-4S] cluster-containing dimeric form of FNR can bind to both sites in the nrdDG promoter region. The development of in-line anSAXS greatly expands the toolbox available for the study of complex metalloproteins and provides a foundation for future expansions.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Oxigênio , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Raios X , Proteínas de Ligação a DNA/metabolismo
13.
Prostate ; 84(14): 1309-1319, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004950

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a condition generally associated with advanced age in men that can be accompanied by bothersome lower urinary tract symptoms (LUTS) including intermittency, weak stream, straining, urgency, frequency, and incomplete bladder voiding. Pharmacotherapies for LUTS/BPH include alpha-blockers, which relax prostatic and urethral smooth muscle and 5ɑ-reductase inhibitors such as finasteride, which can block conversion of testosterone to dihydrotestosterone thereby reducing prostate volume. Celecoxib is a cyclooxygenase-2 inhibitor that reduces inflammation and has shown some promise in reducing prostatic inflammation and alleviating LUTS for some men with histological BPH. However, finasteride and celecoxib can reduce mitochondrial function in some contexts, potentially impacting their efficacy for alleviating BPH-associated LUTS. METHODS: To determine the impact of these pharmacotherapies on mitochondrial function in prostate tissues, we performed immunostaining of mitochondrial Complex I (CI) protein NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3) and inflammatory cells on BPH specimens from patients naïve to treatment, or who were treated with celecoxib and/or finasteride for 28 days, as well as prostate tissues from male mice treated with celecoxib or vehicle control for 28 days. Quantification and statistical correlation analyses of immunostaining were performed. RESULTS: NDUFS3 immunostaining was decreased in BPH compared to normal adjacent prostate. Patients treated with celecoxib and/or finasteride had significantly decreased NDUFS3 in both BPH and normal tissues, and no change in inflammatory cell infiltration compared to untreated patients. Mice treated with celecoxib also displayed a significant decrease in NDUFS3 immunostaining and no change in inflammatory cell infiltration. CONCLUSIONS: These findings suggest that celecoxib and/or finasteride are associated with an overall decrease in NDUFS3 levels in prostate tissues but do not impact the presence of inflammatory cells, suggesting a decline in mitochondrial CI function in the absence of enhanced inflammation. Given that BPH has recently been associated with increased prostatic mitochondrial dysfunction, celecoxib and/or finasteride may exacerbate existing mitochondrial dysfunction in some BPH patients thereby potentially limiting their overall efficacy in providing metabolic stability and symptom relief.


Assuntos
Celecoxib , Finasterida , Hiperplasia Prostática , Masculino , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Finasterida/farmacologia , Finasterida/uso terapêutico , Humanos , Animais , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Camundongos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Idoso , Próstata/efeitos dos fármacos , Próstata/patologia , Próstata/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Transporte de Elétrons/efeitos dos fármacos , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/metabolismo , Sintomas do Trato Urinário Inferior/patologia , Complexo I de Transporte de Elétrons/metabolismo
14.
Photosynth Res ; 159(2-3): 203-227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37369875

RESUMO

In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.


Assuntos
Complexo Citocromos b6f , Citocromos b , Plastoquinona/análogos & derivados , Transporte de Elétrons/fisiologia , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Oxirredução , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo
15.
J Biol Chem ; 298(7): 102131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700827

RESUMO

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre , Thermotoga maritima , Coenzimas/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Níquel/metabolismo , Nucleotídeos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
16.
J Biol Chem ; 298(8): 102243, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35810787

RESUMO

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Plastídeos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
17.
J Biol Chem ; 298(10): 102465, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075292

RESUMO

Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S; iron-sulfur (Fe-S)] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes, severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in Saccharomyces cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side-chain contacts to THF as defined in GcvT, and the THF-binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.


Assuntos
Proteínas Ferro-Enxofre , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte/metabolismo , Ácido Fólico/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolatos/metabolismo
18.
J Biol Chem ; 298(1): 101468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896149

RESUMO

Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.


Assuntos
Apicoplastos , Ferredoxinas , Proteínas Ferro-Enxofre , Proteínas de Protozoários , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Vias Biossintéticas , Difosfatos/metabolismo , Elétrons , Eritritol/análogos & derivados , Eritritol/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
19.
J Biol Chem ; 298(4): 101698, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35148994

RESUMO

The viral protein HBx is the key regulatory factor of the hepatitis B virus (HBV) and the main etiology for HBV-associated liver diseases, such as cirrhosis and hepatocellular carcinoma. Historically, HBx has defied biochemical and structural characterization, deterring efforts to understand its molecular mechanisms. Here we show that soluble HBx fused to solubility tags copurifies with either a [2Fe-2S] or a [4Fe-4S] cluster, a feature that is shared among five HBV genotypes. We show that the O2-stable [2Fe-2S] cluster form converts to an O2-sensitive [4Fe-4S] state when reacted with chemical reductants, a transformation that is best described by a reductive coupling mechanism reminiscent of Fe-S cluster scaffold proteins. In addition, the Fe-S cluster conversions are partially reversible in successive reduction-oxidation cycles, with cluster loss mainly occurring during (re)oxidation. The considerably negative reduction potential of the [4Fe-4S]2+/1+ couple (-520 mV) suggests that electron transfer may not be likely in the cell. Collectively, our findings identify HBx as an Fe-S protein with striking similarities to Fe-S scaffold proteins both in cluster type and reductive transformation. An Fe-S cluster in HBx offers new insights into its previously unknown molecular properties and sets the stage for deciphering the roles of HBx-associated iron (mis)regulation and reactive oxygen species in the context of liver tumorigenesis.


Assuntos
Vírus da Hepatite B , Peliose Hepática , Transativadores , Proteínas Virais Reguladoras e Acessórias , Transporte de Elétrons , Genótipo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Ferro/metabolismo , Oxirredução , Peliose Hepática/fisiopatologia , Peliose Hepática/virologia , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
20.
J Biol Chem ; 298(2): 101570, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026224

RESUMO

In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Sulfurtransferases , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfurtransferases/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa