Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Biosci Biotechnol Biochem ; 87(9): 954-959, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37291696

RESUMO

We present a step-economical divergent synthetic approach for isoflavene derivatives using the Suzuki-Miyaura cross coupling of a 3-boryl-2H-chromene and three aryl bromides. 3-Boryl-2H-chromene, which is not a well-explored species, was prepared via Miyaura-Ishiyama borylation of a 3-chloro-2H-chromene obtained through a Claisen rearrangement cyclization cascade reaction. Further conversion of the cross-coupling products, three isoflavene derivatives, afforded three isoflavonoid natural products with one or two additional reaction steps.


Assuntos
Produtos Biológicos , Brometos , Benzopiranos , Ciclização
2.
J Asian Nat Prod Res ; 25(1): 44-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35113741

RESUMO

One new 6a,11a-dehydropterocarpan derivative, 6-O-methyl-anhydrotuberosin (1), one new 6a-hydroxypterocarpan, (6aR,11aR,11bR)-hydroxytuberosone (7), and seven known compounds including two 6a,11a-dehydropterocarpans (2 and 4), two coumestans (3 and 5), one isoflavonoid (6) and two other phenolic compounds (8 and 9) were isolated from the roots of Pueraria lobata. The structures of the isolated compounds were elucidated with spectroscopic and spectrometric methods (1 D and 2DNMR, HRESIMS). Compounds 1, 2, 4-5 showed potent LSD1 inhibitory activities with IC50 values ranging from 1.73 to 4.99 µM. Furthermore, compound 2 showed potent cytotoxicity against gastric cancer cell lines MGC-803 and BGC-823, and lung cancer cell lines H1299 and H460.


Assuntos
Isoflavonas , Pueraria , Pueraria/química , Linhagem Celular , Fenóis , Histona Desmetilases/análise , Raízes de Plantas/química , Isoflavonas/farmacologia , Isoflavonas/química
3.
Plant Cell Rep ; 41(2): 415-430, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34851457

RESUMO

KEY MESSAGE: 5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.


Assuntos
Enzimas/genética , Enzimas/metabolismo , Flavonoides/metabolismo , Lupinus/metabolismo , Proteínas de Plantas/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Cromatografia Líquida de Alta Pressão , Flavanonas/genética , Flavanonas/metabolismo , Flavonoides/análise , Flavonoides/química , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Genisteína/análise , Genisteína/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Isoflavonas/análise , Isoflavonas/metabolismo , Lupinus/genética , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012755

RESUMO

The bioactive components of Canavalia lineata (Thunb.) DC pods were investigated using bioactivity-guided isolation, and the chemical structures of flavonoids 1-3, isoflavonoid derivatives 4-11, and phenolic compounds 12 and 13 were identified by comparing NMR, MS, and CD spectral data with previously reported spectroscopic data. Compounds 1-13 were evaluated for their anti-inflammatory effects on LPS-stimulated RAW264.7 macrophages. Among these compounds, the isoflavonoid derivative cajanin (7) exhibited the most potent anti-inflammatory activity (IC50 of NO = 19.38 ± 0.05 µM; IC50 of IL-6 = 7.78 ± 0.04 µM; IC50 of TNF-α = 26.82 ± 0.11 µM), exerting its anti-inflammatory effects by suppressing the activation and nuclear translocation of the transcription factor NF-κB by phosphorylating IκB and p65. These results suggested that cajanin (7) may be a potential candidate for improving the treatment of inflammatory diseases.


Assuntos
Canavalia , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/farmacologia , Óxido Nítrico/farmacologia , Células RAW 264.7
5.
Molecules ; 27(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35408732

RESUMO

Flavonoids, which are abundant in plants, are recognized for their antioxidant and anticancer roles in clinical applications. However, little is known about the molecular basis of flavonoid biosynthesis in fungi. In this study, we found that inclusion of leachate of Korshinsk peashrub (Caragana korshinskii) in the fermentation medium increased the total flavonoid content of the edible fungus Auricularia cornea by 23.6% relative to that grown in a control medium. Combined transcriptomic and non-targeted metabolomic analysis of the flavonoid biosynthesis pathway in A. cornea illustrated that there are important metabolites in the phenylpropanoid, coumarin and isoflavonoid biosynthesis pathways. In addition, we found that certain homologous genes encode phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and chalcone isomerase (CHI) in these biosynthesis pathways. These results, in this study, provide a new line for studying the regulation of flavonoid production in edible fungi.


Assuntos
Metabolômica , Transcriptoma , Auricularia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase/metabolismo
6.
Phytochem Anal ; 32(4): 474-481, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32929804

RESUMO

INTRODUCTION: The root of the Ononis species has been used internally and externally in ethnomedicine for centuries and contains biologically valuable isoflavonoid compounds. Therefore, it is important to obtain quantitative information about the isoflavonoid profile of these plants. OBJECTIVES: In this article we aimed to develop an optimised sample preparation protocol alongside a validated method for the quantitative measurement of isoflavones, isoflavanones and pterocarpans in the form of glucosides and aglycones, in order to compare the specialised metabolites of Ononis spinosa L. and O. arvensis L. MATERIAL AND METHODS: Quantitative determination was carried out by the means of ultra-performance liquid chromatography coupled with ultraviolet diode-array detection (UPLC-UV-DAD). RESULTS: An optimised sample preparation method was developed to transform malonyl glucosides to their glucosidic forms. Chromatographic methods were created for the baseline separation of isoflavones, isoflavanones and pterocarpans alongside with their glucosides. Altogether 12 compounds were evaluated quantitatively in samples of O. spinosa and O. arvensis. CONCLUSION: As a result, no characteristic change could be observed between the two species regarding their isoflavonoid pattern.


Assuntos
Flavonas , Isoflavonas , Ononis , Cromatografia Líquida de Alta Pressão , Glucosídeos , Isoflavonas/análise
7.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884432

RESUMO

Red clover (Trifolium pratense L.) is used as forage and contains a high level of isoflavonoids. Although isoflavonoids in red clover were discovered a long time ago, the transcriptional regulation of isoflavonoid biosynthesis is virtually unknown because of the lack of accurate and comprehensive characterization of the transcriptome. Here, we used a combination of long-read (PacBio Iso-Seq) and short-read (Illumina) RNAseq sequencing to develop a more comprehensive full-length transcriptome in four tissues (root, stem, leaf, and flower) and to identify transcription factors possibly involved in isoflavonoid biosynthesis in red clover. Overall, we obtained 50,922 isoforms, including 19,860 known genes and 2817 novel isoforms based on the annotation of RefGen Tp_v2.0. We also found 1843 long non-coding RNAs, 1625 fusion genes, and 34,612 alternatively spliced events, with some transcript isoforms validated experimentally. A total of 16,734 differentially expressed genes were identified in the four tissues, including 43 isoflavonoid-biosynthesis-related genes, such as stem-specific expressed TpPAL, TpC4H, and Tp4CL and root-specific expressed TpCHS, TpCHI1, and TpIFS. Further, weighted gene co-expression network analysis and a targeted compound assay were combined to investigate the association between the isoflavonoid content and the transcription factors expression in the four tissues. Twelve transcription factors were identified as key genes for isoflavonoid biosynthesis. Among these transcription factors, the overexpression of TpMYB30 or TpRSM1-2 significantly increased the isoflavonoid content in tobacco. In particular, the glycitin was increased by 50-100 times in the plants overexpressing TpRSM1-2, in comparison to that in the WT plants. Our study provides a comprehensive and accurate annotation of the red clover transcriptome and candidate genes to improve isoflavonoid biosynthesis and accelerate research into molecular breeding in red clover or other crops.


Assuntos
Perfilação da Expressão Gênica/métodos , Isoflavonas/biossíntese , Fatores de Transcrição/genética , Trifolium/metabolismo , Processamento Alternativo , Vias Biossintéticas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de RNA , Trifolium/genética
8.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198596

RESUMO

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Flavonoides/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Flavonoides/química , Lasers/normas , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
9.
Plant J ; 99(2): 257-269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30893500

RESUMO

Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-ß-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-ß-l-rhamnose. The mutant H357Q exhibited activity with both UDP-ß-l-rhamnose and UDP-glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor-His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Hexosiltransferases/química , Ramnose/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Análise Mutacional de DNA , Hexosiltransferases/metabolismo , Hexosiltransferases/fisiologia , Quercetina/química , Quercetina/metabolismo , Ramnose/metabolismo
10.
Proteins ; 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32725893

RESUMO

Isoflavonoid is one of the groups of flavonoids that play pivotal roles in the survival of land plants. Chalcone synthase (CHS), the first enzyme of the isoflavonoid biosynthetic pathway, catalyzes the formation of a common isoflavonoid precursor. We have previously reported that an isozyme of soybean CHS (termed GmCHS1) is a key component of the isoflavonoid metabolon, a protein complex to enhance efficiency of isoflavonoid production. Here, we determined the crystal structure of GmCHS1 as a first step of understanding the metabolon structure, as well as to better understand the catalytic mechanism of GmCHS1.

11.
Mol Plant Microbe Interact ; 33(12): 1411-1423, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924759

RESUMO

A wide variety of leguminous plant-released (iso)flavonoids, such as genistein, are potential inducers of the nodulation (nod) genes of endosymbiotic rhizobia for the production of Nod factors, which are vital signaling molecules for triggering the symbiotic process. However, these (iso)flavonoids are generally thought to be toxic to the bacterial partner to varying degrees. Here, a novel TetR-like regulator gene of the soybean symbiont Bradyrhizobium diazoefficiens USDA110, bdtR (systematic designation blr7023), was characterized. It was found to be rapidly and preferentially induced by genistein, and its mutation resulted in significantly increased expression of the neighboring bll7019-bll7021 genes, encoding a multidrug resistance efflux pump system, in the absence of this isoflavonoid. Then, the transcriptional start site of BdtR was determined, and it was revealed that BdtR acted as a transcriptional repressor of the above efflux system through the binding of an AT-rich operator, which could be completely prevented by genistein. In addition, the ΔbdtR deletion mutant strain showed higher accumulation of extracellular genistein and became less susceptible to the isoflavonoid. In contrast, the inactivation of BdtR led to the significantly decreased induction of a nodulation gene (nodY) independent of the expression of nodD1 and nodW and to much weaker nodulation competitiveness. Taken together, the results show that BdtR plays an early sensing role in maintaining the intracellular homeostasis of genistein, helping to alleviate its toxic effect on this bacterium by negatively regulating neighboring genes encoding an efflux pump system while being essentially required for nodule occupancy competitiveness.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bradyrhizobium , Genisteína , Glycine max , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica , Genisteína/farmacologia , Glycine max/metabolismo , Glycine max/microbiologia , Simbiose
12.
Plant Biotechnol J ; 18(6): 1384-1395, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31769589

RESUMO

Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9-mediated multiplex gene-editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple-mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one-third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.


Assuntos
Isoflavonas , Vírus do Mosaico , Sistemas CRISPR-Cas/genética , Engenharia Metabólica , Plantas Geneticamente Modificadas/genética , Glycine max/genética
13.
J Asian Nat Prod Res ; 22(8): 754-761, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31311336

RESUMO

A benzyl-α-pyrone metabolite, streptpyrone A (1), was obtained together with three known isoflavonoids, daidzein-7-O-α-l-rhamnoside (2), genistein-7-O-α-l-rhamnoside (3), and daidzein (4), from the culture broth of an Indonesian actinomycete Streptomyces sp. TPU1401A. The structure of 1, elucidated based on its spectroscopic data, has been reported as a synthetic compound. However, this is the first report of the isolation of 1 as a metabolite of microbial origin. Strain TPU1401A exhibited the ability to transform the isoflavone aglycones 4 and genistein (5) into the 7-O-glycosides 2 and 3, respectively. Compounds 2 and 3 promoted the growth of strain TPU1401A more effectively than compounds 4 and 5. These results suggest that strain TPU1401A utilizes isoflavone glycosides to promote growth by transforming isoflavones through microbial glycosidation.


Assuntos
Isoflavonas , Streptomyces , Genisteína , Indonésia , Estrutura Molecular , Pironas
14.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352963

RESUMO

Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6-9) and machaeridiols A-C (10-12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, -1708, -1717, -33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6-8 and 10-12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC's, compared to 12, against MRSA 1708 and -1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5-8 µg/mL for two strains of Acinetobacter baumannii, 2-16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.


Assuntos
Antibacterianos/farmacologia , Benzopiranos/farmacologia , Fabaceae/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Benzopiranos/química , Benzopiranos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular
15.
Bioorg Chem ; 83: 135-144, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352359

RESUMO

Pueraria lobata root (PLR), well known as Kudzu root, has recently become commercially available in Western dietary supplements for menopausal symptoms. The scientific basis for its action has been attributed to the action of phytoestrogens. This study aimed to investigate the estrogen-like activity of isoflavonoids isolated from P. lobata root and their safety with respect to their effect on breast cancer cell proliferation. In an E-screen assay, crude MeOH extract of PLR significantly increased the proliferation of MCF-7 cells in a concentration-dependent manner. Among the four fractions obtained by solvent fractionation of MeOH extract, the n-BuOH fraction had significant estrogen-like activities at all concentrations tested. Phytochemical analysis of the n-BuOH fraction led to the isolation of 10 isoflavones (1-10), among which genistein (10) had significant estrogen-like activities at all concentrations tested. These activities were significantly enhanced by treatment with genistein and 17ß-estradiol compared with 17ß-estradiol alone, and this effect was mediated by decreased expression of estrogen receptor (ER)α and phospho-ERα in MCF-7 cells. In a cell cytotoxicity assay, genistein (10) exhibited significant cytotoxicity in both ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. This cytotoxicity was characterized by the induction of apoptotic cells stained with annexin V conjugated with Alexa Fluor 488 and involved activation of mitochondria-independent and -dependent apoptosis pathways in MCF-7 cells. Our results demonstrated that genistein (10) has estrogen-like effects dependent on ER pathway activation and anti-proliferative effects mediated by the apoptosis pathway rather than the ER pathway in MCF-7 breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Isoflavonas/farmacologia , Raízes de Plantas/química , Pueraria/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio/metabolismo , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
16.
Biotechnol Appl Biochem ; 66(4): 484-493, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26498482

RESUMO

Isoflavonoid representatives such as genistein and daidzein are highly potent anticancer, antibacterial, and antioxidant agents. It have been demonstrated that methylation of flavonoids enhanced the transporting ability, which lead to facilitated absorption and greatly increased bioavailability. In this paper, genetically engineered Escherichia coli was reconstructed by harboring E. coli K12-derived metK encoding S-adenosine-l-methionine (SAM) synthase (accession number: K02129) for enhancement of SAM as a precursor and Streptomyces avermitilis originated SaOMT2 (O-methyltransferase, accession number: NP_823558) for methylation of daidzein and genistein as preferred substrates. The formation of desired products via biotransformation including 4'-O-methyl-genistein and 4'-O-methyl-daidzein was confirmed individually by using chromatographical methods such as high-performance liquid chromatography, liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS), and nuclear magnetic resonance (NMR), and NMR (1 H and 13 C). Furthermore, substrates concentration, incubation time, and media parameters were optimized using flask culture. Finally, the most fit conditions were applied for fed-batch fermentation with scale-up to 3 L (working volume) to obtain the maximum yield of the products including 164.25 µM (46.81 mg/L) and 382.50 µM (102.88 mg/L) for 4'-O-methyl genistein and 4'-O-methyl daidzein, respectively. In particular, potent inhibitory activities of those isoflavonoid methoxides against the growth of cancer line (B16F10, AGS, and HepG2) and human umbilical vein endothelial cells were investigated and demonstrated. Taken together, this research work described the production of isoflavonoid-4'-O-methoxides by E. coli engineering, improvement of production, characterization of produced compounds, and preliminary in vitro biological activities of the flavonoids being manufactured.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Escherichia coli/metabolismo , Isoflavonas/biossíntese , Isoflavonas/farmacologia , Engenharia Metabólica , Metanol/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Isoflavonas/química , Metanol/química , Metanol/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Mar Drugs ; 17(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108876

RESUMO

The mangrove ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science. Besides the genus Streptomyces, Micromonospora is also a source of new bioactive agents. We screened Micromonospora from the rhizosphere soil of mangrove plants in Fujian province, China, and 51 strains were obtained. Among them, the extracts of 12 isolates inhibited the growth of human lung carcinoma A549 cells. Strain 110B exhibited better cytotoxic activity, and its bioactive constituents were investigated. Consequently, three new isoflavonoid glycosides, daidzein-4'-(2-deoxy-α-l-fucopyranoside) (1), daidzein-7-(2-deoxy-α-l-fucopyranoside) (2), and daidzein-4',7-di-(2-deoxy-α-l-fucopyranoside) (3) were isolated from the fermentation broth of strain 110B. The structures of the new compounds were determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The result of medium-changing experiments implicated that these new compounds were microbial biotransformation products of strain M. aurantiaca 110B. The three compounds displayed moderate cytotoxic activity to the human lung carcinoma cell line A549, hepatocellular liver carcinoma cell line HepG2, and the human colon tumor cell line HCT116, whereas none of them showed antifungal or antibacterial activities.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Micromonospora/química , Células A549 , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Células HCT116 , Células Hep G2 , Humanos , Isoflavonas/química , Microbiologia do Solo
18.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669260

RESUMO

Understanding the role of substituents is of great importance for the preparation of novel phenolic compounds with enhanced antioxidative properties. In this work, the antioxidative activity of isoflavonoid derivatives with different substituents placed at the C2 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) related to hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were calculated. The strongest antioxidative group of isoflavonoid is not altered by the substituents. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Equations obtained from linear regression can be useful in the selection of suitable candidates for the synthesis of novel isoflavonoids derivatives with enhanced antioxidative properties. In the gas and benzene phases, the electron-donating substituents would enhance the antioxidative activity of isoflavonoids via weakening the BDE of 4'-OH. In water phase, they will reduce the antioxidative by strengthening the PA of 7-OH. Contrary results occur for the electron-withdrawing groups. In addition, the electronic effects of substituents on the BDE/IP/PA have also been analyzed.


Assuntos
Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Isoflavonas/química , Isoflavonas/farmacologia , Ligação de Hidrogênio , Estrutura Molecular , Prótons , Relação Estrutura-Atividade
19.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683508

RESUMO

In this study, four malonyl isoflavonoid glycosides (MIGs), a type of isoflavonoid with poor structural stability, were efficiently isolated and purified from Astragali Radix by a medium pressure ODS C18 column chromatography. The structures of the four compounds were determined on the basis of NMR and literature analysis. Their major diagnostic fragment ions and fragmentation pathways were proposed in ESI/Q-TOF/MS positive mode. Using a target precursor ions scan, a total of 26 isoflavonoid compounds, including eleven malonyl isoflavonoid glycosides coupled with eight related isoflavonoid glycosides and seven aglycones were characterized from the methanolic extract of Astragali Radix. To clarify the relationship of MIGs and the ratio of transformation in Astragali Radix under different extraction conditions, two MIGs (calycosin-7-O-glycoside-6″-O-malonate and formononetin-7-O-glycoside-6″-O-malonate) coupled with related glycosides (calycosin-7-O-glycoside and formononetin-7-O-glycoside) and aglycones (calycosin and formononetin) were detected by a comprehensive HPLC-UV method. Results showed that MIGs could convert into related glycosides under elevated temperature conditions, which was further confirmed by the conversion experiment of MIGs reference compounds. Moreover, the total contents of MIGs and related glycosides displayed no obvious change during the long-duration extraction. These findings indicated that the quality of Astragali Radix could be evaluated efficiently and accurately by using the total content of MIGs and related glycosides as the quality index.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Glicosídeos/química , Isoflavonas/química , Malonatos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Astragalus propinquus , Calibragem , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Limite de Detecção , Espectroscopia de Prótons por Ressonância Magnética , Padrões de Referência
20.
Plant Cell Physiol ; 59(1): 128-141, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140457

RESUMO

Prenylated isoflavonoids have been found in several legume plants, and they possess various biological activities that play important roles in both plant defense and human health. However, it is still unknown whether prenylated isoflavonoids are present in the model legume plant Lotus japonicus. In the present study, we found that the prenylated isoflavonoid wighteone was produced in L. japonicus when leaf was supplemented with genistein. Furthermore, a novel prenyltransferase gene, LjG6DT, was identified, which shared high similarity with and was closely related to several known prenyltransferase genes involved in isoflavonoid biosynthesis. The recombinant LjG6DT protein expressed in yeast exhibited prenylation activity toward genistein as an exclusive substrate, which produced wighteone, a prenylated genistein at the C-6 position that occurs normally in legume plants. The LjG6DT-green fluorescent protein (GFP) fusion protein is targeted to plastids. The transcript level of LjG6DT is induced by glutathione, methyl jasmonate and salicylic acid, implying that LjG6DT is involved in stress response. Overexpression of LjG6DT in L. japonicus hairy roots led to increased accumulation of wighteone when genistein was supplied, indicating that LjG6DT is functional in vivo. Feeding assays with the upstream intermediate naringenin revealed that accumulation of wighteone in L. japonicus was dependent on genistein supplementation, and accumulation of wighteone is competed by genistein methylation. This study demonstrated that phytoalexin wighteone is inducibly produced in L. japonicus, and it provides new insight into the biosynthesis and accumulation of prenylated isoflavonoids in legume plants.


Assuntos
Dimetilaliltranstransferase/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genisteína/farmacologia , Isoflavonas/biossíntese , Lotus/genética , Proteínas de Plantas/genética , Dimetilaliltranstransferase/metabolismo , Flavonoides/biossíntese , Glutationa/farmacologia , Lotus/metabolismo , Fitoestrógenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Sesquiterpenos/metabolismo , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa