Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 74: 431-454, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905757

RESUMO

Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Quinolinas/farmacologia , Quinolinas/uso terapêutico
2.
Antimicrob Agents Chemother ; 68(8): e0165923, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39028193

RESUMO

Artemisinin-based combination therapies (ACTs) were introduced as the standard of care for uncomplicated malaria in Africa almost two decades ago. Recent studies in East Africa have reported a gradual increase in kelch13 (k13) mutant parasites associated with reduced artesunate efficacy. As part of the Community Access to Rectal Artesunate for Malaria project, we collected blood samples from 697 children with signs of severe malaria in northern Uganda between 2018 and 2020, before and after the introduction of rectal artesunate (RAS) in 2019. K13 polymorphisms were assessed, and parasite editing and phenotyping were performed to assess the impact of mutations on parasite resistance. Whole-genome sequencing was performed, and haplotype networks were constructed to determine the geographic origin of k13 mutations. Of the 697 children, 540 were positive for Plasmodium falciparum malaria by PCR and were treated with either RAS or injectable artesunate monotherapy followed in most cases by ACT. The most common k13 mutation was C469Y (6.7%), which was detected more frequently in samples collected after RAS introduction. Genome editing confirmed reduced in vitro susceptibility to artemisinin in C469Y-harboring parasites compared to wild-type controls (P < 0.001). The haplotypic network showed that flanking regions of the C469Y mutation shared the same African genetic background, suggesting a single and indigenous origin of the mutation. Our data provide evidence of selection for the artemisinin-resistant C469Y mutation. The realistic threat of multiresistant parasites emerging in Africa should encourage careful monitoring of the efficacy of artemisinin derivatives and strict adherence to ACT treatment regimens.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Uganda , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Mutação , Artesunato/uso terapêutico , Artesunato/farmacologia , Pré-Escolar , Criança , Masculino , Feminino
3.
Malar J ; 23(1): 150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755607

RESUMO

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Mutação , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Antimaláricos/farmacologia , Proteínas de Protozoários/genética , Resistência a Medicamentos/genética , Ruanda , Malária Falciparum/parasitologia , Malária Falciparum/epidemiologia , Humanos , Antígenos de Protozoários/genética , Prevalência , Criança , Adulto Jovem , Adolescente , Adulto , Pré-Escolar
4.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
5.
Parasitol Res ; 123(5): 209, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740597

RESUMO

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Assuntos
Antimaláricos , Artemisininas , Polimorfismo Genético , Artemisininas/uso terapêutico , Humanos , Antimaláricos/uso terapêutico , Prevalência , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Proteínas de Protozoários/genética , Sudeste Asiático/epidemiologia
6.
J Infect Dis ; 225(8): 1411-1414, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34216470

RESUMO

In Southeast Asia, mutations in the Plasmodium falciparum K13 gene have led to delayed parasite clearance and treatment failures in patients with malaria receiving artemisinin combination therapies. Until recently, relevant K13 mutations had been mostly absent from Africa. Between 2018 and 2019, a phase 2 clinical study with 186 patients was conducted in Mali, Gabon, Ghana, Uganda, and Rwanda. Patients with malaria were randomized and treated with artemether-lumefantrine or cipargamin. Here we report an allele frequency of 22% for R561H in Rwanda and associated delayed parasite clearance. Notwithstanding, efficacy of artemether-lumefantrine remained high in Rwanda, with a 94.4% polymerase chain reaction-corrected cure rate.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Resistência a Medicamentos/genética , Gabão , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/genética , Prevalência , Proteínas de Protozoários/genética , Ruanda/epidemiologia
7.
Antimicrob Agents Chemother ; 66(1): e0132021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606334

RESUMO

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 (pfk13) gene. Here, we carried out in vitro selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Assuntos
Antimaláricos , Artemisininas , Domínio BTB-POZ , Proteínas de Protozoários , Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
8.
Malar J ; 21(1): 207, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768869

RESUMO

BACKGROUND: Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. METHODS: From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. RESULTS: Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated  Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. CONCLUSION: Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Lumefantrina/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , África do Sul
9.
Am Econ Rev ; 112(5): 1621-1668, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384376

RESUMO

Workers' compensation insurance, which provides no-fault coverage for work-related injuries, is mandatory in nearly all states. We use administrative data from a unique market without a coverage mandate to estimate the demand for workers' compensation insurance, leveraging regulatory premium updates for identification. We find that a 1 percent increase in premiums leads to approximately a 0.3 percent decline in coverage. Drawing upon these estimates and data on costs, we examine potential justifications for government intervention to increase coverage. This analysis suggests that several forms of market failure-such as adverse selection, market power, and externalities-may not justify a mandate in this setting.

10.
J Infect Dis ; 223(9): 1631-1638, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32901248

RESUMO

BACKGROUND: Artemisinin monotherapy of Plasmodium falciparum infection is frequently ineffective due to recrudescence. Artemisinin-induced dormancy, shown in vitro and in animal models, provides a plausible explanation. To date, direct evidence of artemisinin-induced dormancy in humans is lacking. METHODS: Blood samples were collected from Plasmodium falciparum 3D7- or K13-infected participants before and 48-72 hours after single-dose artesunate (AS) treatment. Parasite morphology, molecular signature of dormancy, capability and dynamics of seeding in vitro cultures, and genetic mutations in the K13 gene were investigated. RESULTS: Dormant parasites were observed in post-AS blood samples of 3D7- and K13-infected participants. The molecular signature of dormancy, an up-regulation of acetyl CoA carboxylase, was detected in 3D7 and K13 samples post-AS, but not in pre-AS samples. Posttreatment samples successfully seeded in vitro cultures, with a significant delay in time to reach 2% parasitemia compared to pretreatment samples. CONCLUSIONS: This study provides strong evidence for the presence of artemisinin-induced dormant parasites in P. falciparum infections. These parasites are a likely reservoir for recrudescent infection following artemisinin monotherapy and artemisinin combination therapy (ACT). Combination regimens that target dormant parasites or remain at therapeutic levels for a sufficient time to kill recovering parasites will likely improve efficacy of ACTs.


Assuntos
Antimaláricos , Artesunato , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários
11.
BMC Cancer ; 21(1): 782, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229645

RESUMO

BACKGROUND: Accumulated studies indicate that aberrant expression of long noncoding RNAs (lncRNAs) is associated with tumorigenesis and progression of colon cancer. In the present study, long intergenic non-protein coding RNA 1287 (LINC01287) was identified to up-regulate in colon cancer by transcriptome RNA-sequencing, but the exact function remained unclear. METHODS: Transcriptome RNA-sequencing was conducted to identify dysregulated lncRNAs. Expression of LINC01287 was evaluated by real-time quantitative PCR. The downstream targets of LINC01287 and miR-4500 were verified by luciferase reporter assay, pull down assay and western blot. The potential functions of LINC01287 were evaluated by cell viability assay, colony formation assay, soft agar assay, flow cytometry, transwell migration and invasion assay, and tumor xenograft growth in colon cancer cells. RESULTS: Our results indicated that LINC01287 was up-regulated in colon cancer patients. High LINC01287 expression was associated with advanced TNM stage, lymph node metastasis, distant metastasis and shorter overall survival. Knockdown of LINC01287 inhibited cell growth, colony formation in plates and soft agar, transwell cell migration and invasion, and epithelial-mesenchymal transition (EMT) of colon cancer cells, while LINC01287 overexpression had contrary effects. In addition, LINC01287 mediated MAP3K13 expression by sponging miR-4500, thus promoted NF-κB p65 phosphorylation. Restored MAP3K13 expression or miR-4500 knockdown partially abrogated the effects of silencing LINC01287 in colon cancer cells. CONCLUSION: Our findings demonstrated that the LINC01287/miR-4500/MAP3K13 axis promoted progression of colon cancer. Therefore, LINC01287 might be a potential therapeutic target and prognostic marker for colon cancer patients.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transfecção
12.
Malar J ; 20(1): 16, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407529

RESUMO

BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum. METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method. RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed. CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genótipo , Técnicas de Genotipagem/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Plasmodium falciparum/efeitos dos fármacos , Reprodutibilidade dos Testes
13.
BMC Infect Dis ; 21(1): 853, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418991

RESUMO

BACKGROUND: Malaria causes major public health problems globally and drug resistance hinders its control and elimination. Molecular markers associated with drug resistance are considered as a beneficial tool to monitor the disease trends, evolution and distribution so as to help improve drug policy. METHODS: We collected 148 Plasmodium falciparum and 20 Plasmodium vivax isolates imported into Hangzhou city, China between 2014 and 2019. k13 gene of P. falciparum and k12 of P. vivax were sequenced. Polymorphisms and prevalence of k13 and k12 were analyzed. RESULTS: Most (98.65%, 146/148) P. falciparum infections were imported from Africa, and half P. vivax cases came from Africa and the other half from Asia. Nucleotide mutation prevalence was 2.03% (3/148) and the proportion of amino acid mutations was 0.68% (1/148). The amino acid mutation, A676S, was observed in an isolate from Nigeria. No mutation of k12 was observed from the parasites from African and Asian countries. CONCLUSIONS: Limited polymorphism in k13 gene of P. falciparum isolates imported from African countries, but no evidence for the polymorphism of k12 in P. vivax samples from African and Asian countries was found. These results provide information for drug policy update in study region.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/uso terapêutico , Ásia , China/epidemiologia , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Nigéria , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
14.
Biomed Chromatogr ; 35(7): e5095, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33607700

RESUMO

A sensitive and robust method has been developed using an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay to quantify Tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma. Automated solid-phase extraction on a Waters Oasis WCX (30 µm, 10 mg) 96-well plate was used to extract Tat-K13 from human plasma and the extracts were separated on a Waters Acquity CSH column (2.1 × 50 mm i.d., 1.7 µm) with a gradient elution method by mobile phase A (nonafluoropentanoic acid-acetic acid-water, 1:2:1000, v/v/v) and B (nonafluoropentanoic acid-acetic acid-water-acetonitrile, 1:2:100:900, v/v/v/v). The method was fully validated following international bioanalytical guidelines and showed good linearity from 2.10 to 1,050 ng/ml. The method was successfully applied to investigate the clinical pharmacokinetics of Tat-K13 in health volunteers. Rapid elimination of Tat-K13 from the body was observed, with half-life ranging from 0.26 to 0.78 h across different dose levels. The exposure of Tat-K13 was approximately dose-dependent in terms of the area under the concentration-time curve and peak concentration.


Assuntos
Fármacos Cardiovasculares , Cromatografia Líquida de Alta Pressão/métodos , AVC Isquêmico/tratamento farmacológico , Peptídeos , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Fármacos Cardiovasculares/sangue , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapêutico , Humanos , Pessoa de Meia-Idade , Peptídeos/sangue , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Reprodutibilidade dos Testes , Adulto Jovem
15.
Malar J ; 19(1): 59, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019571

RESUMO

BACKGROUND: Resistance to anti-malarial drugs hinders malaria elimination. Monitoring the molecular markers of drug resistance helps improve malaria treatment policies. This study aimed to assess the distribution of molecular markers of imported Plasmodium falciparum infections. METHODS: In total, 485 P. falciparum cases imported from Africa, Southeast Asia, and Oceania into Zhejiang province, China, from 2016 to 2018 were investigated. Most were imported from Africa, and only a few cases originated in Asia and Oceania. Blood samples were collected from each patient. Plasmodium falciparum chloroquine resistance transporter (Pfcrt) at residues 72-76 and Kelch13-propeller (k13) were determined by nested PCR and DNA sequence. RESULTS: Wild-type Pfcrt at residues 72-76 was predominant (72.61%), but mutant and mixed alleles were also detected, of which CVIET (22.72%) was the most common. Mutant Pfcrt haplotypes were more frequent in patients from West Africa (26.92%), North Africa (25%), and Central Africa (21.93%). The number of cases of P. falciparum infections was small in Southeast Asia and Oceania, and these cases involved Pfcrt mutant type. For the k13 propeller gene, 26 samples presented 19 different point mutations, including eight nonsynonymous mutations (P441S, D464E, K503E, R561H, A578S, R622I, V650F, N694K). In addition, R561H, one of the validated SNPs in k13, was detected in one patient from Myanmar and one patient from Rwanda. A578S, although common in Africa, was found in only one patient from Cameroon. R622I was detected in one sample from Mozambique and one sample from Somalia. The genetic diversity of k13 was low in most regions of Africa and purifying selection was suggested by Tajima's D test. CONCLUSIONS: The frequency and spatial distributions of Pfcrt and k13 mutations associated with drug resistance were determined. Wild-type Pfcrt was dominant in Africa. Among k13 mutations correlated with delayed parasite clearance, only the R561H mutation was found in one case from Rwanda in Africa. Both Pfcrt and k13 mutations were detected in patients from Southeast Asia and Oceania. These findings provide insights into the molecular epidemiological profile of drug resistance markers in the study region.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Malária Falciparum/epidemiologia , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Adolescente , Adulto , África/etnologia , Idoso , Criança , China/epidemiologia , Resistência a Medicamentos/genética , Feminino , Variação Genética , Genótipo , Haplótipos , Humanos , Malária Falciparum/etnologia , Masculino , Pessoa de Meia-Idade , Mutação , Mianmar/etnologia , Papua Nova Guiné/etnologia , Filipinas/etnologia , Mutação Puntual , Migrantes , Adulto Jovem
16.
Malar J ; 19(1): 246, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660505

RESUMO

BACKGROUND: Eighteen imported ovale malaria cases imported from Myanmar and various African countries have been reported in Yunnan Province, China from 2013 to 2018. All of them have been confirmed by morphological examination and 18S small subunit ribosomal RNA gene (18S rRNA) based PCR in YNRL. Nevertheless, the subtypes of Plasmodium ovale could not be identified based on 18S rRNA gene test, thus posing challenges on its accurate diagnosis. To help establish a more sensitive and specific method for the detection of P. ovale genes, this study performs sequence analysis on k13-propeller polymorphisms in P. ovale. METHODS: Dried blood spots (DBS) from ovale malaria cases were collected from January 2013 to December 2018, and the infection sources were confirmed according to epidemiological investigation. DNA was extracted, and the coding region (from 206th aa to 725th aa) in k13 gene propeller domain was amplified using nested PCR. Subsequently, the amplified products were sequenced and compared with reference sequence to obtain CDS. The haplotypes and mutation loci of the CDS were analysed, and the spatial structure of the amino acid peptide chain of k13 gene propeller domain was predicted by SWISS-MODEL. RESULTS: The coding region from 224th aa to 725th aa of k13 gene from P. ovale in 83.3% of collected samples (15/18) were amplified. Three haplotypes were observed in 15 samples, and the values of Ka/Ks, nucleic acid diversity index (π) and expected heterozygosity (He) were 3.784, 0.0095, and 0.4250. Curtisi haplotype, Wallikeri haplotype, and mutant type accounted for 73.3% (11/15), 20.0% (3/15), and 6.7% (1/15). The predominant haplotypes of P. ovale curtisi were determined in all five Myanmar isolates. Of the ten African isolates, six were identified as P. o. curtisi, three were P. o. wallikeri and one was mutant type. Base substitutions between the sequences of P. o. curtisi and P. o. wallikeri were determined at 38 loci, such as c.711. Moreover, the A > T base substitution at c.1428 was a nonsynonymous mutation, resulting in amino acid variation of T476S in the 476th position. Compared with sequence of P. o. wallikeri, the double nonsynonymous mutations of G > A and A > T at the sites of c.1186 and c.1428 leads to the variations of D396N and T476S for the 396th and 476th amino acids positions. For P. o. curtisi and P. o. wallikeri, the peptide chains in the coding region from 224th aa to 725th aa of k13 gene merely formed a monomeric spatial model, whereas the double-variant peptide chains of D396N and T476S formed homodimeric spatial model. CONCLUSION: The propeller domain of k13 gene in the P. ovale isolates imported into Yunnan Province from Myanmar and Africa showed high differentiation. The sequences of Myanmar-imported isolates belong to P. o. curtisi, while the sequences of African isolates showed the sympatric distribution from P. o. curtisi, P. o. wallikeri and mutant isolates. The CDS with a double base substitution formed a dimeric spatial model to encode the peptide chain, which is completely different from the monomeric spatial structure to encode the peptide chain from P. o. curtisi and P. o. wallikeri.


Assuntos
Testes Diagnósticos de Rotina/métodos , Plasmodium ovale/isolamento & purificação , Polimorfismo Genético , China , Genótipo , Mianmar , Plasmodium ovale/classificação , Plasmodium ovale/genética
17.
Malar J ; 19(1): 397, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168025

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended at the initial phase for treatment of Plasmodium falciparum, to reduce morbidity and mortality in all countries where malaria is endemic. Polymorphism in portions of P. falciparum gene encoding kelch (K13)-propeller domains is associated with delayed parasite clearance after ACT. Of about 124 different non-synonymous mutations, 46 have been identified in Southeast Asia (SEA), 62 in sub-Saharan Africa (SSA) and 16 in both the regions. This is the first study designed to analyse the prevalence of polymorphism in the P. falciparum k13-propeller domain in the Jazan region of southwest Saudi Arabia, where malaria is endemic. METHODS: One-hundred and forty P. falciparum samples were collected from Jazan region of southwest Saudi Arabia at three different times: 20 samples in 2011, 40 samples in 2016 and 80 samples in 2020 after the implementation of ACT. Plasmodium falciparum kelch13 (k13) gene DNA was extracted, amplified, sequenced, and analysed using a basic local alignment search tool (BLAST). RESULTS: This study obtained 51 non-synonymous (NS) mutations in three time groups, divided as follows: 6 single nucleotide polymorphisms (SNPs) '11.8%' in samples collected in 2011 only, 3 (5.9%) in 2011and 2016, 5 (9.8%) in 2011 and 2020, 5 (9.8%) in 2016 only, 8 (15.7%) in 2016 and 2020, 14 (27.5%) in 2020 and 10 (19.6%) in all the groups. The BLAST revealed that the 2011 isolates were genetically closer to African isolates (53.3%) than Asian ones (46.7%). Interestingly, this proportion changed completely in 2020, to become closer to Asian isolates (81.6%) than to African ones (18.4%). CONCLUSIONS: Despite the diversity of the identified mutations in the k13-propeller gene, these data did not report widespread artemisinin-resistant polymorphisms in the Jazan region where these samples were collected. Such a process would be expected to increase frequencies of mutations associated with the resistance of ACT.


Assuntos
Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Arábia Saudita , Análise de Sequência de DNA
18.
Malar J ; 19(1): 378, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092587

RESUMO

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is the only anti-malarial drug formulation approved for intermittent preventive treatment in pregnancy (IPTp). However, mutations in the Plasmodium falciparum dhfr (Pfdhfr) and dhps (Pfdhps) genes confer resistance to pyrimethamine and sulfadoxine, respectively. Here, the frequencies of SP resistance-associated mutations from 2005 to 2018 were compared in samples from Kenyan children with malaria residing in a holoendemic transmission region. METHODS: Partial sequences of the Pfdhfr and Pfdhps genes were amplified and sequenced from samples collected in 2005 (n = 81), 2010 (n = 95), 2017 (n = 43), and 2018 (n = 55). The frequency of known mutations conferring resistance to pyrimethamine and sulfadoxine were estimated and compared. Since artemisinin-based combination therapy (ACT) is the current first-line treatment for malaria, the presence of mutations in the propeller domain of P. falciparum kelch13 gene (Pfk13) linked to ACT-delayed parasite clearance was studied in the 2017/18 samples. RESULTS: Among other changes, the point mutation of Pfdhps S436H increased in frequency from undetectable in 2005 to 28% in 2017/18. Triple Pfdhfr mutant allele (CIRNI) increased in frequency from 84% in 2005 to 95% in 2017/18, while the frequency of Pfdhfr double mutant alleles declined (allele CICNI from 29% in 2005 to 6% in 2017/18, and CNRNI from 9% in 2005 to undetectable in 2010 and 2017/18). Thus, a multilocus Pfdhfr/Pfdhps genotype with six mutations (HGEAA/CIRNI), including Pfdhps S436H, increased in frequency from 2010 to 2017/18. Although none of the mutations associated with ACT-delayed parasite clearance was observed, the Pfk13 mutation A578S, the most widespread Pfk13 SNP found in Africa, was detected in low frequency (2.04%). CONCLUSIONS: There were changes in SP resistance mutant allele frequencies, including an increase in the Pfdhps S436H. Although these patterns seem consistent with directional selection due to drug pressure, there is a lack of information to determine the actual cause of such changes. These results suggest incorporating molecular surveillance of Pfdhfr/Pfdhps mutations in the context of SP efficacy studies for intermittent preventive treatment in pregnancy (IPTp).


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genética , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Quênia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
19.
Malar J ; 19(1): 290, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795288

RESUMO

BACKGROUND: Artesunate plus sulfadoxine-pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015-2016 after 3-4 years of ASP use, are reported. METHODS: Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16-185, pfdhps 436-632 and K13 407-689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. RESULTS: Sulfadoxine-pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. CONCLUSION: The frequency of P. falciparum with reduced susceptibility to sulfadoxine-pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Combinação de Medicamentos , Humanos , Índia , Lactente , Malária Falciparum/prevenção & controle , Pessoa de Meia-Idade , Mutação , Plasmodium falciparum/efeitos dos fármacos , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-31358588

RESUMO

Artemisinin-based combination therapies (ACTs) are the standard of care to treat uncomplicated falciparum malaria. However, resistance to artemisinins, defined as delayed parasite clearance after therapy, has emerged in Southeast Asia, and the spread of resistance to sub-Saharan Africa could have devastating consequences. Artemisinin resistance has been associated in Southeast Asia with multiple nonsynonymous single nucleotide polymorphisms (NS-SNPs) in the propeller domain of the gene encoding the Plasmodium falciparum K13 protein (K13PD). Some K13PD NS-SNPs have been seen in Africa, but the relevance of these mutations is unclear. To assess whether ACT use has selected for specific K13PD mutations, we compared the K13PD genetic diversity in clinical isolates collected before and after the implementation of ACT use from seven sites across Uganda. We detected K13PD NS-SNPs in 16 of 683 (2.3%) clinical isolates collected between 1999 and 2004 and in 26 of 716 (3.6%) isolates collected between 2012 and 2016 (P = 0.16), representing a total of 29 different polymorphisms at 27 codons. Individual NS-SNPs were usually detected only once, and none were found in more than 0.7% of the isolates. Three SNPs (C469F, P574L, and A675V) associated with delayed clearance in Southeast Asia were seen in samples collected between 2012 and 2016, each in a single isolate. No differences in diversity following implementation of ACT use were found at any of the seven sites, nor was there evidence of selective pressures acting on the locus. Our results suggest that selection by ACTs is not impacting on K13PD diversity in Uganda.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Plasmodium falciparum/patogenicidade , Códon/genética , Haplótipos/genética , Humanos , Malária Falciparum/diagnóstico por imagem , Malária Falciparum/parasitologia , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Uganda
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa