Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Arch Microbiol ; 206(3): 99, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351393

RESUMO

Feather waste is a highly prevalent form of keratinous waste that is generated by the poultry industry. The global daily production of feather waste has been shown to approach 5 million tons, typically being disposed of through methods such as dumping, landfilling, or incineration which contribute significantly to environmental pollutions. The proper management of these keratinous wastes is crucial to avoid environmental contamination. The study was carried out to isolate the keratinolytic fungi from the poultry disposal sites of different region of North-East India to evaluate its potential in bioremediation of the feathers wastes. Out of 12 fungal strains isolated from the sites, the fungus showing the highest zone of hydrolysis on both the skim milk and keratin agar medium was selected for the study and the molecular identification of the isolate was performed through DNA sequence analysis by amplifying the internal transcribed spacer (ITS) region. The sequence results showed higher similarity (above 95%) with Aspergillus spp. and was named Aspergillus sp. Iro-1. The strain was further analyzed for its feather degrading potential which was performed in submerged conditions under optimized conditions. The study showed that the strain could effectively degrade the feathers validated through weight loss method, and the structural deformations in the feathers were visualized through scanning electron microscopy (SEM). Aspergillus sp. Iro-1 was obtained from the southern region of Assam. It would be of great importance as the implementation of this sp. can help in the bioremediation of feathers wastes in this region. This is the first study of identification of feather degrading fungus from southern part of Assam (Barak).


Assuntos
Peptídeo Hidrolases , Aves Domésticas , Animais , Aves Domésticas/microbiologia , Peptídeo Hidrolases/metabolismo , Fungos/genética , Fungos/metabolismo , Hidrólise , Biodegradação Ambiental , Queratinas/metabolismo , Concentração de Íons de Hidrogênio , Galinhas , Temperatura
2.
Bioprocess Biosyst Eng ; 47(12): 2091-2099, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39271537

RESUMO

The production of keratinases was evaluated in submerged fermentation with Aspergillus niger and by pigs' swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate's potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L-1 of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL-1 of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.


Assuntos
Aspergillus niger , Reatores Biológicos , Cromo , Peptídeo Hidrolases , Cromo/química , Cromo/metabolismo , Aspergillus niger/enzimologia , Animais , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Suínos , Fermentação , Concentração de Íons de Hidrogênio , Proteínas Fúngicas/biossíntese
3.
BMC Microbiol ; 23(1): 158, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248454

RESUMO

In this study, 25 actinomyces isolates were obtained from 10 different poultry farms and tested for their keratinase activity. The isolate with the highest keratinase activity was identified through molecular identification by PCR and sequencing of the 16S rRNA gene to be Streptomyces spp. and was named Streptomyces werraensis KN23 with an accession number of OK086273 in the NCBI database. Sequential mutagenesis was then applied to this strain using UV, H2O2, and SA, resulting in several mutants. The best keratinolytic efficiency mutant was designated as SA-27 and exhibited a keratinase activity of 106.92 U/ml. To optimize the keratinase expression of mutant SA-27, the Response Surface Methodology was applied using different parameters such as incubation time, pH, carbon, and nitrogen sources. The optimized culture conditions resulted in a maximum keratinase specific activity of 129.60 U/ml. The genetic diversity of Streptomyces werraensis KN23 wild type compared with five mutants was studied using Inter-simple sequence repeat (ISSR). The highest total and polymorphic unique bands were revealed in the S. werraensis KN23 and SA-18 mutant, with 51 and 41 bands, respectively. The dendrogram based on combined molecular data grouped the Streptomyces werraensis and mutants into two clusters. Cluster I included SA-31 only, while cluster II contained two sub-clusters. Sub-cluster one included SA-27, and sub-cluster two included SA-26. The sub-cluster two divided into two sub-sub clusters. Sub-sub cluster one included SA-18, while sub-sub cluster two included one group (SA-14 and S. werraensis KN23).


Assuntos
Plumas , Streptomyces , Animais , Plumas/metabolismo , RNA Ribossômico 16S/genética , Peróxido de Hidrogênio/metabolismo , Peptídeo Hidrolases/genética , Streptomyces/genética , Streptomyces/metabolismo , Mutagênese , Concentração de Íons de Hidrogênio
4.
Arch Microbiol ; 205(6): 235, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179267

RESUMO

The disposal of keratinous wastes produced by several leather industries is evolving into a global problem. Around 1 billion tonnes of keratin waste are released into the environment each year. In the breakdown of tannery waste, certain enzymes, such as keratinases produced from microorganisms, might be a better substitute for synthetic enzymes. Keratinase enzymes are able to hydrolyze gelatin, casein, bovine serum albumin and insoluble protein present in wool, feather. Therefore, in this study, bacterial strains from tannery effluent-contaminated soil and bovine tannery hide were isolated and assessed for their ability to produce the keratinolytic enzyme. Among the six isolates, the strain NS1P showed the highest keratinase activity (298 U/ml) and was identified as Comamonas testosterone through biochemical and molecular characterization. Several bioprocess parameters such as pH, temperature, inoculum size, carbon sources, and nitrogen sources were optimized in order to maximize crude enzyme production. The optimized media were used for inoculum preparation and subsequent biodegradation of hide hairs. The degradation efficacy of the keratinase enzyme produced by Comamonas testosterone was examined by degrading bovine tannery hide hairs, and it was found to be 73.6% after 30 days. The morphology of the deteriorated hair was examined using a field emission scanning electron microscope (FE-SEM), which revealed significant degradation. Thus, our research work has led to the conclusion that Comamonas testosterone may be a promising keratinolytic strain for the biodegradation of tannery bovine hide hair waste and the industrial production of keratinases.


Assuntos
Bactérias , Biodegradação Ambiental , Cabelo , Peptídeo Hidrolases , Solo , Curtume , Animais , Bactérias/genética , Bactérias/metabolismo , Cabelo/metabolismo , Concentração de Íons de Hidrogênio , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Testosterona/metabolismo
5.
Environ Res ; 221: 115283, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639016

RESUMO

The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.


Assuntos
Detergentes , Cloreto de Sódio , Animais , Detergentes/análise , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Índia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Metais/análise , Plumas , Concentração de Íons de Hidrogênio , Temperatura , Galinhas/genética
6.
Appl Microbiol Biotechnol ; 107(4): 1003-1017, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633625

RESUMO

Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Queratinas/metabolismo , Plumas/metabolismo , Concentração de Íons de Hidrogênio
7.
Appl Microbiol Biotechnol ; 107(23): 7055-7070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750916

RESUMO

Feathers become hazardous pollutants when deposited directly into the environment. The rapid expansion of the poultry industry has significantly increased feather waste, necessitating the development of new ways to degrade and utilize feathers. This study investigated the ability of Bacillus licheniformis WHU to digest intact chicken feathers in water. The results indicated that yields of free amino acids, bioactive peptides, and keratin-derived nano-/micro-particles were improved in bacteria- versus purified keratinase-derived feather hydrolysate. Bacteria-derived feather hydrolysate supplementation induced health benefits in mice, including significantly increased intestinal villus height and zonula occludens-1 protein expression, as well as increased secretory immunoglobulin A levels in the intestinal mucosa and superoxide dismutase activity in serum. Additionally, feather hydrolysate supplementation modulated the mouse gut microbiota, reflected by increased relative abundance of probiotics such as Lactobacillus spp., decreased relative abundance of Proteobacteria at the phylum level and pathogens such as Staphylococcus spp., and increased Bacteroidota/Firmicutes ratio. This study developed a simple, cost-effective method to degrade feathers by B. licheniformis WHU digestion, yielding a hydrolysate that can be directly used as a bioactive nutrient resource. The study findings have applications in the livestock, poultry, and aquaculture industries, which have high demands for cheap protein. KEY POINTS: • Bacillus licheniformis could degrade intact feather in water. • The resulting feather hydrolysate shows prebiotic effects on mouse.


Assuntos
Bacillus licheniformis , Animais , Camundongos , Bacillus licheniformis/metabolismo , Plumas/química , Plumas/metabolismo , Plumas/microbiologia , Água/metabolismo , Galinhas , Peptídeo Hidrolases/metabolismo , Aves Domésticas , Bactérias/metabolismo , Nutrientes , Queratinas/metabolismo
8.
J Environ Manage ; 346: 118986, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714086

RESUMO

Poultry feathers are widely discarded as waste worldwide and are considered an environmental pollutant and a reservoir of pathogenic bacteria. Therefore, developing sustainable and environmentally friendly methods for managing feather waste is one of the important environmental protection requirements. In this study, we investigated a rapid and eco-friendly method for the degradation and valorization of feather waste using keratinase-producing Pseudomonas geniculata H10, and evaluated the applicability of keratinase in environmentally hazardous chemical processes. Strain H10 completely degraded chicken feathers within 48 h by producing keratinase using them as sources of carbon, nitrogen, and sulfur. The culture contained a total of 402.8 µM amino acids, including 8 essential amino acids, which was higher than the chemical treatment. Keratinase was a serine-type metalloprotease with optimal temperature and pH of 30 °C and 9, respectively, and showed relatively high stability at 10-40 °C and pH 3-10. Keratinase was also able to degrade various insoluble keratins such as duck feathers, wool, human hair, and nails. Furthermore, keratinase exhibited more efficient depilation and wool modification than chemical treatment, as well as novel functionalities such as nematicidal and exfoliating activities. This suggests that strain H10 is a promising candidate for the efficient degradation and valorization of feather waste, as well as the improvement of current industrial processes that use hazardous chemicals.

9.
World J Microbiol Biotechnol ; 40(1): 35, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057620

RESUMO

Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
10.
World J Microbiol Biotechnol ; 40(1): 30, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057391

RESUMO

Keratinases have drawn increasing attention in recent decades owing to their catalytic versatility and broad applications from agriculture to medicine. In the present study, we isolated a highly keratinolytic and fibrinolytic bacterium from the campus soil and named it Stenotrophomonas sp. LMY based on genetic information. To identify the potential keratinase genes, the genome sequence of the strain was obtained and analyzed. Sequence alignment and comparison revealed that the protein 1_737 (KerZJ) had the highest sequence homology to a reported keratinase KerBL. We recombinantly expressed KerZJ in Escherichia coli Origami™ (DE) pLysS and purified it to homogeneity. KerZJ showed the highest activity at 40 °C and pH 9.0, and metal ions exhibited no significant effects on its activity. Although reducing agents would break the disulfide bonds in KerZJ and reduce its activity, KerZJ still exhibited the ability to hydrolyze feather keratin in the presence of ß-ME. KerZJ could efficiently digest human prion proteins. In addition, KerZJ showed fibrinolytic activity on fibrin plates and effectively eliminated blood clots in a thrombosis mouse model without side effects. Our results suggest that KerZJ is a versatile keratinase with significant potential for keratin treatment, decontamination of prions, and fibrinolytic therapy.


Assuntos
Peptídeo Hidrolases , Stenotrophomonas , Animais , Humanos , Camundongos , Plumas/química , Concentração de Íons de Hidrogênio , Queratinas , Metais/metabolismo , Peptídeo Hidrolases/metabolismo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo
11.
BMC Biotechnol ; 22(1): 26, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076195

RESUMO

BACKGROUND: With the growing concern for the environment, there are trends that bio-utilization of keratinous waste by keratinases could ease the heavy burden of keratinous waste from the poultry processing and leather industry. Especially surfactant-stable keratinases are beneficial for the detergent industry. Therefore, the production of keratinase by Bacillus cereus YQ15 was improved; the characterization and use of keratinase in detergent were also studied. RESULTS: A novel alkaline keratinase-producing bacterium YQ15 was isolated from feather keratin-rich soil and was identified as Bacillus cereus. Based on the improvement of medium components and culture conditions, the maximum keratinase activity (925 U/mL) was obtained after 36 h of cultivation under conditions of 35 °C and 160 rpm. Moreover, it was observed that the optimal reacting temperature and pH of the keratinase are 60 °C and 10.0, respectively; the activity was severely inhibited by PMSF and EDTA. On the contrary, the keratinase showed remarkable stability in the existence of the various surfactants, including SDS, Tween 20, Tween 60, Tween 80, and Triton X-100. Especially, 5% of Tween 20 and Tween 60 increased the activity by 100% and 60%, respectively. Furtherly, the keratinase revealed high efficiency in removing blood stains. CONCLUSION: The excellent compatibility with commercial detergents and the high washing efficiency of removing blood stains suggested its suitability for potential application as a bio-detergent additive.


Assuntos
Bacillus cereus , Detergentes , Animais , Bacillus cereus/metabolismo , Detergentes/química , Estabilidade Enzimática , Plumas/metabolismo , Concentração de Íons de Hidrogênio , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Polissorbatos , Tensoativos , Temperatura
12.
BMC Biotechnol ; 22(1): 11, 2022 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307009

RESUMO

BACKGROUND: Feathers are the most abundant agricultural waste produced by poultry farms. The accumulation of a large number of feathers not only seriously pollutes the environment but also causes the waste of protein resources. The degradation of feather waste by keratinase-producing strains is currently a promising method. Therefore, screening high-producing keratinase strains from marine environment and studying the fermentation conditions, enzymatic properties and feather degradation mechanism are crucial for efficient degradation of feathers. RESULTS: A novel efficient feather-degrading bacteria, Gxun-17, isolated from the soil sample of a marine duck farm of Beibu Gulf in Guangxi, China, was identified as Bacillus tropicus. The optimum fermentation conditions were obtained by single factor and orthogonal tests as follows: feather concentration of 15 g/L, maltose concentration of 10.0 g/L, MgSO4 concentration of 0.1 g/L, initial pH of 7.0 and temperature of 32.5 °C. The strain completely degraded the feathers within 48 h, and the highest keratinase activity was 112.57 U/mL, which was 3.18-fold that obtained with the basic medium (35.37 U/mL). Detecting the keratinase activity and the content of sulphur-containing compounds in the fermentation products showed that the degradation of feathers by the strain might be a synergistic effect of the enzyme and sulphite. The keratinase showed optimal enzyme activity at pH 7.0 and temperature of 60 °C. The keratinase had the best performance on the casein substrate. When casein was used as the substrate, the Km and Vmax values were 15.24 mg/mL and 0.01 mg/(mL·min), respectively. Mg2+, Ca2+, K+, Co2+, Al3+, phenylmethylsulphonyl fluoride and isopropanol inhibited keratinase activity, which indicated that it was a serine keratinase. Conversely, the keratinase activity strongly increased with the addition of Mn2+ and ß-mercaptoethanol. CONCLUSIONS: A novel feather-degrading B. tropicus Gxun-17 was obtained from marine environment. The strain adapted the extreme conditions such as low temperature, high salt and high pressure. Thus, the keratinase had high activity, wide range of temperature and pH, salt tolerance and other characteristics, which had potential application value.


Assuntos
Caseínas , Plumas , Animais , Bacillus , Caseínas/metabolismo , Galinhas/metabolismo , China , Plumas/química , Concentração de Íons de Hidrogênio , Queratinas/análise , Queratinas/química , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Temperatura
13.
Arch Microbiol ; 204(9): 565, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982264

RESUMO

The aim of this present work was to explore the potential feather-degrading bacterial isolates were isolated from poultry farm soil. Isolation and screening of keratinase-producing bacterial isolates were performed in keratin agar medium. The potential keratinase-producing bacterial isolates were identified using morphological, biochemical and molecular characterization. Degradation of chicken feather was optimized using different nutrient or physical factors in feather meal broth medium. Soluble peptide, amino acid and free thiol group liberation during feather degradation were estimated too. The isolated bacterial isolates were found significantly degrading the chicken feathers with keratinase enzyme production. The present study revealed a significantly novel feather-degrading Geobacillus thermodenitrificans PS41 bacterial isolate, isolated from poultry farm soil.


Assuntos
Plumas , Aves Domésticas , Animais , Galinhas , Meios de Cultura/metabolismo , Fazendas , Plumas/química , Plumas/metabolismo , Plumas/microbiologia , Geobacillus , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/metabolismo , Aves Domésticas/microbiologia , Solo
14.
Biotechnol Bioeng ; 118(7): 2559-2571, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788275

RESUMO

Keratinase is an attractive industrial enzyme that can specifically catalyze keratin waste to obtain value-added products. A challenge to the application of keratinase is improving catalytic capacity to achieve efficient hydrolysis. In this study, we effectively expressed the keratinase gene from Bacillus licheniformis BBE11-1 in Bacillus subtilis WB600 based on pro-peptide engineering. Partial deletion of the pro-peptide sequence and the substitution of amino acid at the pro-peptide cleavage site (P1) suggested that the "chaperone effect" and "cleavage efficiency" of the pro-peptide determine the activity of the mature enzyme. Subsequently, seven target sites that can increase the activity of the mature enzyme by 16%-66% were obtained through the multiple sequence alignment of pro-peptides and site-directed mutation. We further performed combinatorial mutations at six sites based on the design principle of three-codon saturation mutations and obtained mutant 2-D12 (236.8 KU/mg) with a mature enzyme activity of 186% of the original (127.6 KU/mg). Finally, continuous fermentation was carried out in a 5-L bioreactor for 22 h, and the activity of the 2-D12 mature enzyme was increased to 391.6 KU/mg. Most importantly, 2-D12 could degrade more than 90% of feather waste into amino acids and peptides within 12 h with the aid of sulfite.


Assuntos
Bacillus licheniformis/enzimologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Plumas/química , Queratinas/química , Peptídeo Hidrolases/química , Substituição de Aminoácidos , Animais , Bacillus licheniformis/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Catálise , Mutação de Sentido Incorreto , Peptídeo Hidrolases/genética
15.
Arch Microbiol ; 203(9): 5387-5396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390357

RESUMO

Keratinases are a group of proteases of great industrial significance. To take full advantage of Bacillus species as an inherent superior microbial producer of proteases, we performed the ribosome engineering to improve the keratinase synthesis capacity of the wild-type Bacillus thuringiensis by inducing streptomycin resistance. Mutant Bt(Str-O) was identified as a stable keratinase overproducer. Comparative characterization of the two strains revealed that, although the resistance to Streptomycin increased by eight-fold in MIC, the mutant's resistance to other commonly used antibiotics was not affected. Furthermore, the mutant exhibited an enhanced keratinase synthesis (1.5-fold) when cultured in a liquid LB medium. In the whole feather degradation experiment, the mutant could secret twofold keratinase into the medium, reaching 640 U/mL per 107 CFU. By contrast, no significant differences were found in the scanning electron microscopic analysis and spore formation experiment. To understand the genetic factors causing these phenotypic changes, we cloned and analyzed the rpsL gene. No mutation was observed. We subsequently determined the genome sequences of the two strains. Comparing the rpsL gene revealed that the emergence of streptomycin resistance was not necessarily dependent on the mutation(s) in the generally recognized "hotspot." Genome-wide analysis showed that the phenotypic changes of the mutant were the collective consequence of the genetic variations occurring in the regulatory regions and the non-coding RNA genes. This study demonstrated the importance of genetic changes in regulatory regions and the effectiveness of irrational ribosome engineering in creating prokaryotic microbial mutants without sufficient genetic information.


Assuntos
Bacillus thuringiensis , Estreptomicina , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Mutação , Peptídeo Hidrolases/genética , Sequências Reguladoras de Ácido Nucleico , Estreptomicina/farmacologia
16.
Protein Expr Purif ; 186: 105926, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091055

RESUMO

Chryseobacterium carnipullorum 9_R23581T, isolated from raw chicken meat, was evaluated for its potential to degrade keratin found in feathers. The focus of this study was to heterologously express and characterise a keratinolytic enzyme produced by C. carnipullorum. Chryseobacterium carnipullorum secretes proteolytic enzymes that have feather degrading capabilities during its exponential growth phase. This study concluded that the most likely main component of the keratinolytic enzymes of C. carnipullorum was peptidase M64, a serine-endopeptidase with a molecular weight in crude form of 49.46 kDa. Primers were designed on the selected gene of interest, which was amplified from the genome of C. carnipullorum (accession number NZ-FRCD01000002.1). The gene coding for peptidase M64 was further cloned, propagated and expressed in E. coli BL21 [DE3] cells. Purification was by Immobilised Metal Affinity Chromatography (IMAC). The molecular weight of the keratinase was about 50 kDa after purification while its optimum temperature and pH were 50 °C and 8.5, respectively. The activity of this keratinase was inhibited by phenylmethylsulfonyl fluoride (PMSF) and it was enhanced by the presence of divalent metal ions such as Mg2+ and Ca2+. Enzyme activity was further assayed by application to chicken feathers and observed degradation was an indication of keratinolytic potential.


Assuntos
Proteínas de Bactérias , Chryseobacterium , Peptídeo Hidrolases , Proteínas Recombinantes , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galinhas/microbiologia , Chryseobacterium/enzimologia , Chryseobacterium/genética , Estabilidade Enzimática , Escherichia coli/genética , Plumas/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
17.
Appl Microbiol Biotechnol ; 105(10): 3955-3969, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937928

RESUMO

Keratinase is an important enzyme that can degrade recalcitrant keratinous wastes to form beneficial recyclable keratin hydrolysates. Keratinase is not only important as an alternative to reduce environmental pollution caused by chemical treatments of keratinous wastes, but it also has industrial significance. Currently, the bioproduction of keratinase from native keratinolytic host is considered low, and this hampers large-scale usage of the enzyme. Straightforward approaches of cloning and expression of recombinant keratinases from native keratinolytic host are employed to elevate the amount of keratinase produced. However, this is still insufficient to compensate for the lack of its large-scale production to meet the industrial demands. Hence, this review aimed to highlight the various sources of keratinase and the strategies to increase its production in native keratinolytic hosts. Molecular strategies to increase the production of recombinant keratinase such as plasmid selection, promoter engineering, chromosomal integration, signal peptide and propeptide engineering, codon optimization, and glycoengineering were also described. These mentioned strategies have been utilized in heterologous expression hosts, namely, Escherichia coli, Bacillus sp., and Pichia pastoris, as they are most widely used for the heterologous propagations of keratinases to further intensify the production of recombinant keratinases adapted to better suit the large-scale demand for them. KEY POINTS: • Molecular strategies to enhance keratinase production in heterologous hosts. • Construction of a prominent keratinolytic host from a native strain. • Patent analysis of keratinase production shows rapid high interest in molecular field.


Assuntos
Bacillus , Peptídeo Hidrolases , Queratinas , Peptídeo Hidrolases/genética , Saccharomycetales
18.
Gen Comp Endocrinol ; 309: 113795, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33891932

RESUMO

Monitoring the physiology of wild populations presents many technical challenges. Blood samples, long the gold standard of wildlife endocrinology studies, cannot always be obtained. The validation and use of non-plasma samples to obtain hormone data have greatly improved access to more integrated information about an organism's physiological state. Keratinous tissues like skin, hair, nails, feathers, or baleen store steroid hormones in physiologically relevant concentrations, are stable across decades, and can be used to retrospectively infer physiological state at prior points in time. Most protocols for steroid extraction employ physical pulverization or cutting of the sample, followed by mixing with a solvent. Such methods do produce repeatable and useful data, but low hormone yield and detectability issues can complicate research on small or rare samples. We investigated the use of keratinase, an enzyme that breaks down keratin, to improve the extraction and yield of corticosterone from vertebrate keratin tissues. Corticosterone content of keratinase-digested extracts were compared to non-keratinase extracts for baleen from three species of whale (blue, Balaenoptera musculus; bowhead, Balaena mysticetus; southern right, SRW; Eubalaena australis), shed skin from two reptiles (tegu lizard, Salvator merianae; narrow-headed garter snake, Thamnophis rufipunctatus), hair from arctic ground squirrel (AGS; Urocitellus parryii), feathers from Purple Martins (PUMA; Progne subis), and spines from the short-beaked echidna (Tachyglossus aculeatus). We tested four starting masses (10, 25, 50, 100 mg) for each sample; digestion was most complete in the 10 and 25 mg samples. A corticosterone enzyme immunoassay (EIA) was validated for all keratinase-digested extracts. In all sample types except shed skin from reptiles, keratinase digestion improved hormone yield, with PUMA feathers and blue whale baleen having the greatest increase in apparent corticosterone content (100% and 66% more hormone, respectively). The reptilian shed skin samples did not benefit from keratinase digestion, actually yielding less hormone than controls. With further optimization and refinement, keratinase digestion could greatly improve yield of steroid hormones from various wildlife epidermal tissue types, allowing more efficient use of samples and ultimately improving understanding of the endocrine physiology of wild populations.


Assuntos
Balaenoptera , Queratinas , Animais , Corticosterona , Digestão , Peptídeo Hidrolases , Estudos Retrospectivos , Esteroides
19.
Mar Drugs ; 19(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436302

RESUMO

Aqueous biphasic electrophoresis system (ABES) incorporates electric fields into the biphasic system to separate the target biomolecules from crude feedstock. Ionic liquid (IL) is regarded as an excellent candidate as the phase-forming components for ABES because of the great electrical conductivity, which can promote the electromigration of biomolecules in ABES, and thereby enhances the separation efficiency of the target biomolecules from crude feedstock. The application of electric fields to the conventional biphasic system expedites the phase settling time of the biphasic system, which eases the subsequent scaling-up steps and reduces the overall processing time of the recovery process. Alkyl sulphate-based IL is a green and economical halide-free surfactant when compared to the other halide-containing IL. The feasibility of halide-free IL-based ABES to recover Kytococcus sedentarius TWHK01 keratinase was studied. Optimum partition coefficient (Ke = 7.53 ± 0.35) and yield (YT = 80.36% ± 0.71) were recorded with IL-ABES comprised of 15.0% (w/w) [EMIM][ESO4], 20.0% (w/w) sodium carbonate and 15% (w/w) crude feedstock. Selectivity (S) of 5.75 ± 0.27 was obtained with the IL-ABES operated at operation time of 5 min with 10 V voltage supplied. Halide-free IL is proven to be a potential phase-forming component of IL-ABES for large-scale recovery of keratinase.


Assuntos
Peptídeo Hidrolases/química , Eletroforese , Humanos , Líquidos Iônicos , Gerenciamento de Resíduos
20.
BMC Biotechnol ; 20(1): 65, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317483

RESUMO

BACKGROUND: Chicken feathers are the most abundant agro-wastes emanating from the poultry processing farms and present major concerns to environmentalists. Bioutilization of intractable feather wastes for the production of critical proteolytic enzymes is highly attractive from both ecological and biotechnological perspectives. Consequently, physicochemical conditions influencing keratinase production by Bacillus sp. CSK2 on chicken feathers formulation was optimized, and the keratinase was characterized. RESULTS: The highest enzyme activity of 1539.09 ± 68.14 U/mL was obtained after 48 h of incubation with optimized conditions consisting of chicken feathers (7.5 g/L), maltose (2.0 g/L), initial fermentation pH (5.0), incubation temperature (30 °C), and agitation speed (200 rpm). The keratinase showed optimal catalytic efficiency at pH 8.0 and a temperature range of 60 °C - 80 °C. The keratinase thermostability was remarkable with a half-life of above 120 min at 70 °C. Keratinase catalytic efficiency was halted by ethylenediaminetetraacetic acid and 1,10-phenanthroline. However, keratinase activity was enhanced by 2-mercaptoethanol, dimethyl sulfoxide, tween-80, but was strongly inhibited by Al3+ and Fe3+. Upon treatment with laundry detergents, the following keratinase residual activities were achieved: 85.19 ± 1.33% (Sunlight), 90.33 ± 5.95% (Surf), 80.16 ± 2.99% (Omo), 99.49 ± 3.11% (Ariel), and 87.19 ± 0.26% (Maq). CONCLUSION: The remarkable stability of the keratinase with an admixture of organic solvents or laundry detergents portends the industrial and biotechnological significance of the biocatalyst.


Assuntos
Bacillus/enzimologia , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Bacillus/classificação , Bacillus/genética , Bacillus thuringiensis , Proteínas de Bactérias/genética , Galinhas/metabolismo , Detergentes , Estabilidade Enzimática , Plumas/química , Plumas/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa