Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 197: 108089, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553485

RESUMO

The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) ß1, TGFß2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.


Assuntos
Córnea/patologia , Lesões da Córnea/patologia , Matriz Extracelular/metabolismo , Cicatrização/fisiologia , Animais , Apoptose , Lesões da Córnea/metabolismo , Humanos , Miofibroblastos/patologia , Regeneração
2.
Biomed Khim ; 65(1): 33-40, 2019 Jan.
Artigo em Russo | MEDLINE | ID: mdl-30816095

RESUMO

The ultraviolet (UV) B-induced damage of the eye surface of experimental animals (rabbits) includes loss of corneal epithelium, apoptosis of keratocytes and stromal edema. These changes are accompanied by clinically and histologically manifested corneal inflammation, neutrophil infiltration, and exudation of the anterior chamber of the eye. According to mass spectrometric analysis, UV-induced corneal damage is associated with pronounced changes in the lipid composition of tears, including a decrease in the amount of arachidonic acid and prostaglandin E2 and an increase in the concentrations of prostaglandin D2 and its derivative 15d-PGJ2. In addition, it is accompanied by an alteration in the levels of hydroxyeicosate tetraenic acid derivatives, namely upregulation of 12-HETE and downregulation of 5-HETE. The revealed changes indicate the activation of metabolic pathways involving 5-lipoxygenase, 12-lipoxygenase, cyclooxygenase 1 and 2, and prostaglandin-D-synthase. These findings contribute to understanding mechanisms of UV-induced keratitis and point on feasibility of selective anti-inflammatory therapy for improving corneal regeneration after iatrogenic UV damage.


Assuntos
Ácido Araquidônico/metabolismo , Lesões da Córnea/metabolismo , Ceratite/metabolismo , Lágrimas/química , Animais , Córnea , Coelhos , Lesões por Radiação/metabolismo , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa