Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chromosoma ; 129(2): 99-110, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32417983

RESUMO

Microtubules are essential for intracellular transport, cell motility, spindle assembly, and chromosome segregation during cell division. Microtubule dynamics regulate the proper spindle organization and thus contribute to chromosome congression and segregation. Accumulating studies suggest that kinesin-8 motors are emerging regulators of microtubule dynamics and organizations. In this review, we provide an overview of the studies focused on kinesin-8 motors in cell division. We discuss the structures and molecular kinetics of kinesin-8 motors. We highlight the essential roles and mechanisms of kinesin-8 in the regulation of microtubule dynamics and spindle organization. We also shed light on the functions of kinesin-8 motors in chromosome movement and the spindle assembly checkpoint during the cell cycle.


Assuntos
Segregação de Cromossomos , Cinesinas/metabolismo , Microtúbulos/fisiologia , Proteínas Motores Moleculares/metabolismo , Animais , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Fenômenos Químicos , Humanos , Cinesinas/química , Microtúbulos/química , Proteínas Motores Moleculares/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
2.
J Cell Sci ; 132(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31427431

RESUMO

High-fidelity chromosome segregation relies on proper microtubule regulation. Kinesin-8 has been shown to destabilise microtubules to reduce metaphase spindle length and chromosome movements in multiple species. XMAP215/chTOG polymerases catalyse microtubule growth for spindle assembly, elongation and kinetochore-microtubule attachment. Understanding of their biochemical activity has advanced, but little work directly addresses the functionality and interplay of these conserved factors. We utilised the synthetic lethality of fission yeast kinesin-8 (Klp5-Klp6) and XMAP215/chTOG (Dis1) to study their individual and overlapping roles. We found that the non-motor kinesin-8 tailbox is essential for mitotic function; mutation compromises plus-end-directed processivity. Klp5-Klp6 induces catastrophes to control microtubule length and, surprisingly, Dis1 collaborates with kinesin-8 to slow spindle elongation. Together, they enforce a maximum spindle length for a viable metaphase-anaphase transition and limit elongation during anaphase A to prevent lagging chromatids. Our work provides mechanistic insight into how kinesin-8 negatively regulates microtubules and how this functionally overlaps with Dis1 and highlights the importance of spindle length control in mitosis.


Assuntos
Anáfase/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Prófase/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Anáfase/genética , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Cinesinas/genética , Cinetocoros/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Prófase/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(34): E7950-E7959, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093386

RESUMO

Kinesin-8 motors, which move in a highly processive manner toward microtubule plus ends where they act as depolymerases, are essential regulators of microtubule dynamics in cells. To understand their navigation strategy on the microtubule lattice, we studied the 3D motion of single yeast kinesin-8 motors, Kip3, on freely suspended microtubules in vitro. We observed short-pitch, left-handed helical trajectories indicating that kinesin-8 motors frequently switch protofilaments in a directionally biased manner. Intriguingly, sidestepping was not directly coupled to forward stepping but rather depended on the average dwell time per forward step under limiting ATP concentrations. Based on our experimental findings and numerical simulations we propose that effective sidestepping toward the left is regulated by a bifurcation in the Kip3 step cycle, involving a transition from a two-head-bound to a one-head-bound conformation in the ATP-waiting state. Results from a kinesin-1 mutant with extended neck linker hint toward a generic sidestepping mechanism for processive kinesins, facilitating the circumvention of intracellular obstacles on the microtubule surface.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Drosophila/química , Cinesinas/química , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Cinesinas/genética , Cinesinas/metabolismo
4.
Cell Biol Int ; 44(6): 1262-1266, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31486567

RESUMO

This survey paper contains a brief analysis of publications included in the special issue of the scientific journal Cell Biology International titled "Plant Cytoskeleton Structure, Dynamics and Functions". The manuscripts in this special issue reflect some new aspects of plant cytoskeleton organization, signaling and functioning, and results from different Ukrainian research groups, and focuses on bringing together scientists working across different instrumental scales.


Assuntos
Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Plantas/ultraestrutura , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética
5.
Cell Biol Int ; 43(9): 1072-1080, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685905

RESUMO

The results of computer modeling of plant kinesin-8/αß-tubulin complexes with such αß-tubulins' modified amino acid residues as phosphorylated Tyr262 and Tyr107 are reported in this paper. The molecular dynamics of these modified complexes in comparison with the dynamics of non-modified ones suggests that the phosphorylation of both α- and ß-tubulins reveals stabilizing effect on the protein structure around the modified residue. It was found also that the phosphorylation of Tyr107 in ß-tubulin molecule favors to more advantageous kinesin-8 binding with the phosphorylated microtubule surface in terms of energy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
6.
Proc Natl Acad Sci U S A ; 112(29): E3826-35, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150501

RESUMO

Kinesin-8s are plus-end-directed motors that negatively regulate microtubule (MT) length. Well-characterized members of this subfamily (Kip3, Kif18A) exhibit two important properties: (i) They are "ultraprocessive," a feature enabled by a second MT-binding site that tethers the motors to a MT track, and (ii) they dissociate infrequently from the plus end. Together, these characteristics combined with their plus-end motility cause Kip3 and Kif18A to enrich preferentially at the plus ends of long MTs, promoting MT catastrophes or pausing. Kif18B, an understudied human kinesin-8, also limits MT growth during mitosis. In contrast to Kif18A and Kip3, localization of Kif18B to plus ends relies on binding to the plus-end tracking protein EB1, making the relationship between its potential plus-end-directed motility and plus-end accumulation unclear. Using single-molecule assays, we show that Kif18B is only modestly processive and that the motor switches frequently between directed and diffusive modes of motility. Diffusion is promoted by the tail domain, which also contains a second MT-binding site that decreases the off rate of the motor from the MT lattice. In cells, Kif18B concentrates at the extreme tip of a subset of MTs, superseding EB1. Our data demonstrate that kinesin-8 motors use diverse design principles to target MT plus ends, which likely target them to the plus ends of distinct MT subpopulations in the mitotic spindle.


Assuntos
Fenômenos Biofísicos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimento (Física) , Rastreamento de Células , Difusão , Células HeLa , Humanos , Cinesinas/química , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Gravação em Vídeo
7.
J Cell Sci ; 128(20): 3720-30, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26359299

RESUMO

In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy.


Assuntos
Relógios Biológicos/fisiologia , Segregação de Cromossomos/fisiologia , Cromossomos Fúngicos/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/genética , Cinesinas/genética , Schizosaccharomyces/genética
8.
J Cell Sci ; 128(2): 354-63, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25472718

RESUMO

Upon establishment of proper kinetochore-microtubule attachment, the spindle assembly checkpoint (SAC) must be silenced to allow onset of anaphase, which is when sister chromatids segregate equally to two daughter cells. However, how proper kinetochore-microtubule attachment leads to timely anaphase onset remains elusive. Furthermore, the molecular mechanisms of chromosome movement during anaphase A remain unclear. In this study, we show that the fission yeast Alp7/TACC protein recruits a protein complex consisting of the kinesin-8 (Klp5-Klp6) and protein phosphatase 1 (PP1) to the kinetochore upon kinetochore-microtubule attachment. Accumulation of this complex at the kinetochore, on the one hand, facilitates SAC inactivation through PP1, and, on the other hand, accelerates polewards chromosome movement driven by the Klp5-Klp6 motor. We identified an alp7 mutant that had specific defects in binding to the Klp5-Klp6-PP1 complex but with normal localisation to the microtubule and kinetochore. Consistent with our proposition, this mutant shows delayed anaphase onset and decelerated chromosome movement during anaphase A. We propose that the recruitment of kinesin-8-PP1 to the kinetochore through Alp7/TACC interaction plays a crucial role in regulation of timely mitotic progression and chromosome movement during anaphase A.


Assuntos
Anáfase/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Proteína Fosfatase 1/genética , Proteínas de Schizosaccharomyces pombe/genética , Segregação de Cromossomos/genética , Cinesinas/metabolismo , Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Complexos Multiproteicos , Proteínas Nucleares , Ligação Proteica , Proteína Fosfatase 1/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Bioessays ; 37(3): 248-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25557589

RESUMO

Mis-regulation (e.g. overproduction) of the human Ndc80/Hec1 outer kinetochore protein has been associated with aneuploidy and tumourigenesis, but the genetic basis and underlying mechanisms of this phenomenon remain poorly understood. Recent studies have identified the ubiquitous Ndc80 internal loop as a protein-protein interaction platform. Binding partners include the Ska complex, the replication licensing factor Cdt1, the Dam1 complex, TACC-TOG microtubule-associated proteins (MAPs) and kinesin motors. We review the field and propose that the overproduction of Ndc80 may unfavourably absorb these interactors through the internal loop domain and lead to a change in the equilibrium of MAPs and motors in the cells. This sequestration will disrupt microtubule dynamics and the proper segregation of chromosomes in mitosis, leading to aneuploid formation. Further investigation of Ndc80 internal loop-MAPs interactions will bring new insights into their roles in kinetochore-microtubule attachment and tumourigenesis.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Animais , Carcinogênese/metabolismo , Proteínas do Citoesqueleto , Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Nucleares/química , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas
11.
Adv Protein Chem Struct Biol ; 141: 87-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960488

RESUMO

The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.


Assuntos
Cinesinas , Microtúbulos , Polimerização , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Humanos , Animais
12.
Biochem Biophys Res Commun ; 438(1): 97-102, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872115

RESUMO

Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM-DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/prevenção & controle , Deleção de Genes , Marcação de Genes/métodos , Cinesinas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fosforilação/genética , Lesões Pré-Cancerosas/genética
13.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791811

RESUMO

During mitosis, individual microtubules make attachments to chromosomes via a specialized protein complex called the kinetochore to faithfully segregate the chromosomes to daughter cells. Translocation of kinetochores on the lateral surface of the microtubule has been proposed to contribute to high fidelity chromosome capture and alignment at the mitotic midzone, but has been difficult to observe in vivo because of spatial and temporal constraints. To overcome these barriers, we used total internal reflection fluorescence (TIRF) microscopy to track the interactions between microtubules, kinetochore proteins, and other microtubule-associated proteins in lysates from metaphase-arrested Saccharomyces cerevisiae. TIRF microscopy and cryo-correlative light microscopy and electron tomography indicated that we successfully reconstituted interactions between intact kinetochores and microtubules. These kinetochores translocate on the lateral microtubule surface toward the microtubule plus end and transition to end-on attachment, whereupon microtubule depolymerization commences. The directional kinetochore movement is dependent on the highly processive kinesin-8, Kip3. We propose that Kip3 facilitates stable kinetochore attachment to microtubule plus ends through its abilities to move the kinetochore laterally on the surface of the microtubule and to regulate microtubule plus end dynamics.


Assuntos
Cinetocoros , Proteínas de Saccharomyces cerevisiae , Cinesinas , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Mol Cell Biol ; 11(11): 956-966, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31071203

RESUMO

Spatial regulation of microtubule catastrophe is important for controlling microtubule length and consequently contributes to the proper establishment of cell polarity and cell growth. The +TIP proteins including Tip1/CLIP-170, Klp5/Kinesin-8, and Alp14/XMAP215 reside at microtubule plus ends to regulate microtubule dynamics. In the fission yeast Schizosaccharomyces pombe, Tip1 and Alp14 serve as microtubule-stabilizing factors, while Klp5 functions oppositely as a catastrophe-promoting factor. Despite that Tip1 has been shown to play a key role in restricting microtubule catastrophe to the cell end, how Tip1 fulfills the role remains to be determined. Employing live-cell microscopy, we showed that the absence of Tip1 impairs the localization of both Klp5 and Alp14 at microtubule plus ends, but the absence of Klp5 prolongs the residence time of Tip1 at microtubule plus ends. We further revealed that Klp5 accumulates behind Tip1 at microtubule plus ends in a Tip1-dependent manner. In addition, artificially tethering Klp5 to microtubule plus ends promotes premature microtubule catastrophe, while tethering Alp14 to microtubule plus ends in the cells lacking Tip1 rescues the phenotype of short microtubules. These findings establish that Tip1 restricts microtubule catastrophe to the cell end likely by spatially restricting the microtubule catastrophe activity of Klp5 and stabilizing Alp14 at microtubule plus ends. Thus, the work demonstrates the orchestration of Tip1, Alp14, and Klp5 in ensuring microtubule catastrophe at the cell end.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Modelos Biológicos , Fenótipo , Deleção de Sequência
15.
Biol Open ; 6(4): 463-470, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228376

RESUMO

The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl) Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes.

16.
Interface Focus ; 4(6): 20140031, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25485082

RESUMO

The cytoskeleton is regulated by a plethora of enzymes that influence the stability and dynamics of cytoskeletal filaments. How microtubules (MTs) are controlled is of particular importance for mitosis, during which dynamic MTs are responsible for proper segregation of chromosomes. Molecular motors of the kinesin-8 protein family have been shown to depolymerize MTs in a length-dependent manner, and recent experimental and theoretical evidence suggests a possible role for kinesin-8 in the dynamic regulation of MTs. However, so far the detailed molecular mechanisms of how these molecular motors interact with the growing MT tip remain elusive. Here we show that two distinct scenarios for the interactions of kinesin-8 with the MT tip lead to qualitatively different MT dynamics, including accurate length control as well as intermittent dynamics. We give a comprehensive analysis of the regimes where length regulation is possible and characterize how the stationary length depends on the biochemical rates and the bulk concentrations of the various proteins. For a neutral scenario, where MTs grow irrespective of whether the MT tip is occupied by a molecular motor, length regulation is possible only for a narrow range of biochemical rates, and, in particular, limited to small polymerization rates. By contrast, for an inhibition scenario, where the presence of a motor at the MT tip inhibits MT growth, the regime where length regulation is possible is extremely broad and includes high growth rates. These results also apply to situations where a polymerizing enzyme like XMAP215 and kinesin-8 mutually exclude each other from the MT tip. Moreover, we characterize the differences in the stochastic length dynamics between the two scenarios. While for the neutral scenario length is tightly controlled, length dynamics is intermittent for the inhibition scenario and exhibits extended periods of MT growth and shrinkage. On a broader perspective, the set of models established in this work quite generally suggest that mutual exclusion of molecules at the ends of cytoskeletal filaments is an important factor for filament dynamics and regulation.

17.
Syst Synth Biol ; 8(3): 205-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25136382

RESUMO

Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.

18.
Front Plant Sci ; 4: 530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24421781

RESUMO

During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa