Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674888

RESUMO

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.


Assuntos
Complexo de Golgi , Transporte Biológico , Difusão , Complexo de Golgi/metabolismo , Transporte Proteico
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982865

RESUMO

The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly characterized in vitro. It is important to adapt this knowledge to the situation existing in tissues and organs. Moreover, contradictions have accumulated within the field related to the function of endothelial cells (ECs) and their trans-endothelial pathways. This has induced necessity for the re-evaluation of several mechanisms related to the function of vascular ECs and intracellular transport and transcytosis there. Here, we analyze available data related to intracellular transport within ECs and re-examine several hypotheses about the role of different mechanisms in transcytosis across ECs. We propose a new classification of vascular endothelium and hypotheses related to the functional role of caveolae and mechanisms of lipid transport through ECs.


Assuntos
Células Endoteliais , Transcitose , Células Endoteliais/metabolismo , Transporte Biológico/fisiologia , Cavéolas/metabolismo , Membranas Intracelulares/metabolismo , Endotélio Vascular/metabolismo
3.
J Neurosci ; 39(2): 199-211, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30381405

RESUMO

Dynamin 1 (dyn1) is required for clathrin-mediated endocytosis in most secretory (neuronal and neuroendocrine) cells. There are two modes of Ca2+-dependent catecholamine release from single dense-core vesicles: full-quantal (quantal) and subquantal in adrenal chromaffin cells, but their relative occurrences and impacts on total secretion remain unclear. To address this fundamental question in neurotransmission area using both sexes of animals, here we report the following: (1) dyn1-KO increased quantal size (QS, but not vesicle size/content) by ≥250% in dyn1-KO mice; (2) the KO-increased QS was rescued by dyn1 (but not its deficient mutant or dyn2); (3) the ratio of quantal versus subquantal events was increased by KO; (4) following a release event, more protein contents were retained in WT versus KO vesicles; and (5) the fusion pore size (dp) was increased from ≤9 to ≥9 nm by KO. Therefore, Ca2+-induced exocytosis is generally a subquantal release in sympathetic adrenal chromaffin cells, implying that neurotransmitter release is generally regulated by dynamin in neuronal cells.SIGNIFICANCE STATEMENT Ca2+-dependent neurotransmitter release from a single vesicle is the primary event in all neurotransmission, including synaptic/neuroendocrine forms. To determine whether Ca2+-dependent vesicular neurotransmitter release is "all-or-none" (quantal), we provide compelling evidence that most Ca2+-induced secretory events occur via the subquantal mode in native adrenal chromaffin cells. This subquantal release mode is promoted by dynamin 1, which is universally required for most secretory cells, including neurons and neuroendocrine cells. The present work with dyn1-KO mice further confirms that Ca2+-dependent transmitter release is mainly via subquantal mode, suggesting that subquantal release could be also important in other types of cells.


Assuntos
Glândulas Suprarrenais/metabolismo , Células Cromafins/metabolismo , Dinamina I/fisiologia , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Glândulas Suprarrenais/citologia , Animais , Cálcio/farmacologia , Catecolaminas/metabolismo , Dinamina I/genética , Endocitose/fisiologia , Exocitose/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Vesículas Secretórias/metabolismo
4.
Biochem Biophys Res Commun ; 514(3): 1004-1008, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31092326

RESUMO

The release of neurotransmitters via the fusion between synaptic vesicles and the presynaptic membrane is an essential step in synaptic transmission. Synaptic vesicles generally undergo two distinct modes of exocytosis called full-collapse fusion and kiss-and-run fusion. In kiss-and-run fusion, the fusion pore of the synaptic vesicle opens transiently without the vesicle collapsing fully into the plasma membrane; thus, each synaptic vesicle can be used multiple times to release neurotransmitters. Despite considerable research, the detailed mechanisms that underlie kiss-and-run fusion remain elusive, particularly the location of synaptic vesicles after kiss-and-run events. To address this question, we performed real-time three-dimensional tracking of single synaptic vesicles labeled with a single quantum dot in the presynaptic terminal of cultured hippocampal neurons and analyzed the three-dimensional trajectories of these vesicles undergoing kiss-and-run fusion. We found that the majority of these synaptic vesicles underwent another exocytosis event within 120 nm of their original fusion site and underwent a second exocytosis event within 10 s of the first fusion event. These results indicate that after kiss-and-run fusion, synaptic vesicles remain relatively close to their original fusion site and can release repeatedly at brief intervals, allowing neurons to maintain neurotransmitter release during bursting activity.


Assuntos
Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Fusão de Membrana , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Imagem Óptica , Ratos , Transmissão Sináptica
5.
J Cell Sci ; 129(21): 3989-4000, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624612

RESUMO

To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion.


Assuntos
Degranulação Celular , Imunoglobulina E/metabolismo , Mastócitos/fisiologia , Fusão de Membrana , Vesículas Secretórias/metabolismo , Actinas/metabolismo , Animais , Antígenos/metabolismo , Calcimicina/farmacologia , Degranulação Celular/efeitos dos fármacos , Dinaminas/metabolismo , Técnicas Eletroquímicas , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miosina Tipo II/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Serotonina/metabolismo
6.
J Neurochem ; 137(6): 867-79, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26849771

RESUMO

The pattern of stimulation defines important characteristics of the secretory process in neurons and neuroendocrine cells, including the pool of secretory vesicles being recruited, the type and amount of transmitters released, the mode of membrane retrieval, and the mechanisms associated with vesicle replenishment. This review analyzes the mechanisms that regulate these processes in chromaffin cells, as well as in other neuroendocrine and neuronal models. A common factor in these mechanisms is the spatial and temporal distribution of the Ca(2+) signal generated during cell stimulation. For instance, neurosecretory cells and neurons have pools of vesicles with different locations with respect to Ca(2+) channels, and those pools are therefore differentially recruited following different patterns of stimulation. In this regard, a brief stimulus will induce the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels, whereas longer or more intense stimulation will provoke a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location. The pattern of stimulation, and therefore the characteristics of the Ca(2+) signal generated by the stimulus also influence the mode of exocytosis and the type of endocytosis. Indeed, low-frequency stimulation favors kiss-and-run exocytosis and clathrin-independent fast endocytosis, whereas higher frequencies promote full fusion and clathrin-dependent endocytosis. This latter type of endocytosis is accelerated at high-frequency stimulation. Synaptotagmins, calcineurin, dynamin, complexin, and actin remodeling, appear to be involved in the mechanisms that determine the response of these processes to Ca(2+) . In chromaffin cells, a brief stimulus induces the exocytosis of a small pool of vesicles that is highly coupled to voltage-dependent Ca(2+) channels (A), whereas longer or high-frequency stimulation provokes a global Ca(2+) increase, promoting exocytosis irrespective of vesicle location (B). Furthermore, low-frequency stimulation favors kiss-and-run exocytosis (A), whereas higher frequencies promote full fusion (B). In this review, we analyze the mechanisms by which a given stimulation pattern defines the mode of exocytosis, and recruitment and recycling of neurosecretory vesicles. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).


Assuntos
Modelos Biológicos , Células Neuroendócrinas/fisiologia , Via Secretória/fisiologia , Vesículas Secretórias/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio/fisiologia , Endocitose/fisiologia , Exocitose/fisiologia , Humanos , Células Neuroendócrinas/ultraestrutura
7.
J Neurosci ; 34(33): 11106-18, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122907

RESUMO

Exocytosis of recycling endosomes (REs) represents the last step of receptor and membrane recycling, a fundamental process involved in many aspects of cell physiology. In neurons, it is involved in the control of cell polarity and synaptic plasticity and is locally and tightly regulated. However, its molecular mechanisms are still poorly understood. We have imaged single exocytosis events of REs in rat hippocampal neurons in culture transfected with three types of receptors tagged with the pH-sensitive GFP mutant superecliptic phluorin. We found that exocytosis events are grouped into two categories: (1) short burst events in which receptors diffuse into the plasma membrane in a few seconds; and (2) long display events in which receptors remain visible and clustered after exocytosis for many seconds. Display events are much rarer in non-neuronal cells, such as fibroblasts and astrocytes. Using two-color imaging and fast extracellular solution changes, we show that display events correspond to the rapid opening and closing of a fusion pore (or "kiss-and-run") with a median opening time of 2.6 s, which restricts the diffusion of multiple receptor types and bound cargo. Moreover, the RE marker Rab11 remains enriched after display exocytosis events and controls the mode of RE exocytosis. Finally, a given RE can undergo multiple rounds of display exocytosis. The last step of recycling can thus be controlled in neurons for the selective delivery of receptors at the cell surface.


Assuntos
Dendritos/metabolismo , Endossomos/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Actinas/metabolismo , Animais , Dinaminas/metabolismo , Ratos
8.
J Cell Mol Med ; 19(7): 1427-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26033351

RESUMO

Secretion is a fundamental cellular process in living organisms, from yeast to cells in humans. Since the 1950s, it was believed that secretory vesicles completely merged with the cell plasma membrane during secretion. While this may occur, the observation of partially empty vesicles in cells following secretion suggests the presence of an additional mechanism that allows partial discharge of intra-vesicular contents during secretion. This proposed mechanism requires the involvement of a plasma membrane structure called 'porosome', which serves to prevent the collapse of secretory vesicles, and to transiently fuse with the plasma membrane (Kiss-and-run), expel a portion of its contents and disengage. Porosomes are cup-shaped supramolecular lipoprotein structures at the cell plasma membrane ranging in size from 15 nm in neurons and astrocytes to 100-180 nm in endocrine and exocrine cells. Neuronal porosomes are composed of nearly 40 proteins. In comparison, the 120 nm nuclear pore complex is composed of >500 protein molecules. Elucidation of the porosome structure, its chemical composition and functional reconstitution into artificial lipid membrane, and the molecular assembly of membrane-associated t-SNARE and v-SNARE proteins in a ring or rosette complex resulting in the establishment of membrane continuity to form a fusion pore at the porosome base, has been demonstrated. Additionally, the molecular mechanism of secretory vesicle swelling, and its requirement for intra-vesicular content release during cell secretion has also been elucidated. Collectively, these observations provide a molecular understanding of cell secretion, resulting in a paradigm shift in our understanding of the secretory process.


Assuntos
Membrana Celular/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/ultraestrutura , Humanos , Fusão de Membrana , Modelos Biológicos , Proteínas SNARE/metabolismo , Vesículas Secretórias/ultraestrutura
9.
Biochem Biophys Res Commun ; 456(1): 145-50, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446113

RESUMO

Previous studies demonstrated that depletion of membrane cholesterol by 10mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.


Assuntos
Colesterol/metabolismo , Inibidores Enzimáticos/química , Exocitose/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Vesículas Sinápticas/enzimologia , Animais , Benzofenantridinas/química , Eletrofisiologia , Microscopia de Fluorescência , Ácido Mirístico/química , Junção Neuromuscular/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ranidae , Rodaminas/química , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , beta-Ciclodextrinas/química
10.
FASEB J ; 28(5): 2134-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24448823

RESUMO

In mammalian cells, mitochondria receive most incoming iron, yet no entry pathway for iron at the outer mitochondrial membrane (OMM) has been characterized. Our results show that the divalent metal transporter 1 (DMT1) occurs in the OMM. Immunoblots detected DMT1 in mitochondria from a pneumocyte cell model in their OMM. Using the split-ubiquitin yeast 2-hybrid system, we found that cytochrome c oxidase subunit II (COXII) and the translocase of OMM 6-kDa subunit (Tom6) homologue interact with DMT1. COXII coimmunoprecipitates with DMT1. There are 4 DMT1 isoforms that differ at the N and C termini. Using HEK293 cells that inducibly express all of the 4 ends of DMT1, we found all of them in the OMM, as detected by immunoblots after cell fractionation, and in isolated mitochondria, as detected by immunofluorescence. Immunoblot analysis of purified cell fractions from rat renal cortex confirmed and extended these results to the kidney, which expressed high levels of DMT1. Immunogold labeling detected DMT1 colocalization in mitochondria with the voltage-dependent anion-selective channel protein-1, which is expressed in the OMM. We suggest that DMT1 not only exports iron from endosomes, but also serves to import the metal into the mitochondria.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Ânions , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Endossomos/metabolismo , Células HEK293 , Humanos , Córtex Renal/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Plasmídeos/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
J Biol Chem ; 288(28): 20293-305, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23709219

RESUMO

In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.


Assuntos
Membrana Celular/metabolismo , Endocitose , Exocitose , Mastócitos/fisiologia , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fusão de Membrana , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Imagem com Lapso de Tempo , p-Metoxi-N-metilfenetilamina/farmacologia
12.
Front Cell Neurosci ; 18: 1460219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234031

RESUMO

Once upon a time the statistics of quantal release were fashionable: "n" available vesicles (fusion sites), each with probability "p" of releasing a quantum. The story was not so simple, a nice paradigm to be abandoned. Biophysicists, experimenting with "black films," explained the astonishing rapidity of spike-induced release: calcium can trigger the fusion of lipidic vesicles with a lipid bilayer, by masking the negative charges of the membranes. The idea passed away, buried by the discovery of NSF, SNAPs, SNARE proteins and synaptotagmin, Munc, RIM, complexin. Electrophysiology used to be a field for few adepts. Then came patch clamp, and multielectrode arrays and everybody became electrophysiologists. Now, optogenetics have blossomed, and the whole field has changed again. Nice surprise for me, when Alvarez de Toledo demonstrated that release of transmitters could occur through the transient opening of a pore between the vesicle and the plasma-membrane, no collapse of the vesicle in the membrane needed: my mentor Bruno Ceccarelli had cherished this idea ("kiss and run") and tried to prove it for 20 years. The most impressive developments have probably regarded IT, computers and all their applications; machine learning, AI, and the truly spectacular innovations in brain imaging, especially functional ones, have transformed cognitive neurosciences into a new extraordinarily prolific field, and certainly let us imagine that we may finally understand what is going on in our brains. Cellular neuroscience, on the other hand, though the large public has been much less aware of the incredible amount of information the scientific community has acquired on the cellular aspects of neuronal function, may indeed help us to eventually understand the mechanistic detail of how the brain work. But this is no more in the past, this is the future.

13.
Adv Neurobiol ; 33: 43-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615863

RESUMO

Neurotransmitter in vesicles is released through a fusion pore when vesicles fuse with the plasma membrane. Subsequent retrieval of the fused vesicle membrane is the key step in recycling exocytosed vesicles. Application of advanced electrophysiological techniques to a large nerve terminal, the calyx of Held, has led to recordings of endocytosis, individual vesicle fusion and retrieval, and the kinetics of the fusion pore opening process and the fission pore closure process. These studies have revealed three kinetically different forms of endocytosis-rapid, slow, and bulk-and two forms of fusion-full collapse and kiss-and-run. Calcium influx triggers all kinetically distinguishable forms of endocytosis at calyces by activation of calmodulin/calcineurin signaling pathway and protein kinase C, which may dephosphorylate and phosphorylate endocytic proteins. Polymerized actin may provide mechanical forces to bend the membrane, forming membrane pits, the precursor for generating vesicles. These research advancements are reviewed in this chapter.


Assuntos
Cálcio , Sinapses , Humanos , Transporte Biológico
14.
Cell Calcium ; 112: 102737, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099857

RESUMO

Regulated exocytosis, a universal process of eukaryotic cells, involves the merging between the vesicle membrane and the plasma membrane, plays a key role in cell-to-cell communication, particularly in the release of hormones and neurotransmitters. There are a number of barriers a vesicle needs to pass to discharge vesicle content to the extracellular space. At the pre-fusion site vesicles need to be transported to the sites on the plasma membrane where the merger may begin. Classically cytoskeleton was considered an important barrier for vesicle translocation and was thought to be disintegrated to allow vesicle access to the plasma membrane [1]. However, it was considered later that cytoskeletal elements may also play a role at the post-fusion stage, promoting the vesicle merger with the plasma membrane and fusion pore expansion [4,22,23]. In this Special Issue of Cell Calcium entitled "Regulated Exocytosis", the authors address outstanding issues related to vesicle chemical messenger release by regulated exocytosis, including that related to the question whether vesicle content discharge is complete or only partial upon the merging of the vesicle membrane with the plasma membrane triggered by Ca2+. Among processes that limit vesicle discharge at the post-fusion stage is the accumulation of cholesterol in some vesicles [19], a process that has recently been associated with cell aging [20].


Assuntos
Fusão de Membrana , Vesículas Secretórias , Vesículas Secretórias/metabolismo , Membrana Celular/metabolismo , Hormônios , Exocitose
15.
Int J Mol Sci ; 13(6): 6800-6819, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837664

RESUMO

The Golgi apparatus (GA) is the main station along the secretory pathway. Mechanisms of intra-Golgi transport remain unresolved. Three models compete with each other for the right to be defined as the paradigm. The vesicular model cannot explain the following: (1) lipid droplets and aggregates of procollagen that are larger than coatomer I (COPI)-dependent vesicles are transported across the GA; and (2) most anterograde cargoes are depleted in COPI vesicles. The compartment progression/maturation model has the following problems: (1) most Golgi-resident proteins are depleted in COPI vesicles; (2) there are no COPI vesicles for the recycling of the resident proteins in the trans-most-Golgi cisterna; and (3) different proteins have different rates of intra-Golgi transport. The diffusion model based on permanent inter-cisternal connections cannot explain the existence of lipid, ionic and protein gradients across the Golgi stacks. In contrast, the kiss-and-run model has the potential to explain most of the experimental observations. The kiss-and-run model can be symmetric when fusion and then fission occurs in the same place, and asymmetric when fusion takes place in one location, whereas fission takes place in another. The asymmetric kiss-and-run model resembles the carrier maturation mechanism, and it can be used to explain the transport of large cargo aggregates.


Assuntos
Proteína Coatomer/química , Complexo de Golgi/metabolismo , Animais , Transporte Biológico , Colágeno/química , Difusão , Glicosilação , Humanos , Íons , Lipídeos/química , Saccharomyces cerevisiae/metabolismo
16.
Cell Calcium ; 105: 102606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636152

RESUMO

Exocytosis operates through two distinct modes. Full-fusion leads to rapid expulsion of the entire content of a vesicle; kiss-and-run leads to slow and partial expulsion. These two modes have important biological consequences for endocrine regulation and synaptic transmission. Amperometry recordings of catecholamine release from chromaffin cells reveal single-vesicle fusion events corresponding to both of these modes, but classification is often difficult. This study introduces a new method of analyzing amperometry data to improve this classification. The ratio of the average amplitude to the peak amplitude differs between full-fusion and kiss-and-run, and the probability distribution of this ratio is well fitted by a double-Gaussian. Kiss-and-run events identified by this method have fusion pores with kinetic properties different from pores associated with full-fusion. They have slower transition rates and lifetime distributions indicative of irreversible transitions. The total-charge of an amperometric spike is expected to scale with vesicle volume during a full-fusion event. The cube root of this quantity should therefore scale with diameter, but the distribution of this quantity differs from the distribution of vesicle diameter seen in the electron microscope. Fusion pore lifetimes associated with full-fusion depend on vesicle size, and this makes the choice of mode size dependent. The fusion pore thus bifurcates after opening, and vesicle size influences this choice. The secretory vesicle protein synaptophysin influences the size dependence of fusion pore lifetime and the choice of release mode. Incorporating vesicle size into an analysis of release mode reconciled the kinetics of fusion pores, as well as the distributions of vesicle diameter and catecholamine content. Thus, the initial fusion pore emerges as a critical focus in endocrine regulation. By modulating the size-dependence of the mode of exocytosis, changes in the molecular makeup of the exocytotic apparatus can impact the shape and size of an amperometric event, and the speed and composition of secretion.


Assuntos
Células Cromafins , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Vesículas Secretórias/metabolismo
17.
Life Sci ; 296: 120433, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219696

RESUMO

AIMS: Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: "full-collapse" or "kiss-and-run". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal. METHODS: Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling. KEY FINDINGS: An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway. SIGNIFICANCE: At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.


Assuntos
Exocitose/fisiologia , Junção Neuromuscular/fisiologia , Receptores Adrenérgicos/metabolismo , Acetilcolina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Dexmedetomidina/farmacologia , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Corantes Fluorescentes/farmacocinética , Camundongos Endogâmicos BALB C , Junção Neuromuscular/efeitos dos fármacos , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Receptores Adrenérgicos alfa 2/metabolismo , Vesículas Sinápticas/metabolismo
18.
J Morphol ; 283(11): 1381-1389, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059156

RESUMO

Porosomes are plasma membrane structures in secretory cells that allow transient docking and/or partial fusion of vesicles during which they release their content then disengage. This is referred to as "kiss and run" exocytosis. During early pregnancy, at the time of receptivity, there is a high level of vesicle activity in uterine epithelial cells (UECs). One of the secretory pathways for these vesicles could be via porosomes, which have yet to be identified in UECs. This study identified porosomes in the apical plasma membrane of UECs for the first time. These structures were present on days 1, 5.5, and 6 of early pregnancy, where they likely facilitate partial secretion via "kiss and run" exocytosis. The porosomes were measured and quantified on days 1, 5.5, and 6, which showed there are significantly more porosomes on day 5.5 (receptive) compared to day 1 (nonreceptive) of pregnancy. This increase in porosome numbers may reflect major morphological and molecular changes in the apical plasma membrane at this time such as increased cholesterol and soluble NSF attachment protein receptor proteins, as these are structural and functional components of the porosome complex assembly. Porosomes were observed in both resting (inactive) and dilated (active) states on days 1, 5.5, and 6 of early pregnancy. Porosomes on day 5.5 are significantly more active than on day 1 as demonstrated by the dilation of their base diameter. Further two-way ANOVA analysis of base diameter in resting and dilated states found a significant increase in porosome activity in day 5.5 compared to day 1. This study therefore indicates an increase in the number and activity of porosomes at the time of uterine receptivity in the rat, revealing a mechanism by which the UECs modify the uterine luminal environment at this time.


Assuntos
Células Epiteliais , Exocitose , Gravidez , Feminino , Animais , Ratos , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas SNARE/metabolismo
19.
Microb Cell ; 8(5): 87-90, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33981760

RESUMO

Eukaryotic cells are complicated factories that need ensure productivity and functionality on the cellular level as well as being able to communicate with their environment. In order to do so cells developed intracellular communication systems. For a long time, research focused mainly on the secretory/biosynthetic and endocytic routes for communication, leaving the communication with other organelles apart. In the last decade, this view has changed dramatically and a more holistic view of intracellular communication is emerging. We are still at the tip of the iceberg, but a common theme of touching, kissing, fusing is emerging as general principles of communication.

20.
Neuron ; 109(19): 3119-3134.e5, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411513

RESUMO

Transformation of flat membrane into round vesicles is generally thought to underlie endocytosis and produce speed-, amount-, and vesicle-size-specific endocytic modes. Visualizing depolarization-induced exocytic and endocytic membrane transformation in live neuroendocrine chromaffin cells, we found that flat membrane is transformed into Λ-shaped, Ω-shaped, and O-shaped vesicles via invagination, Λ-base constriction, and Ω-pore constriction, respectively. Surprisingly, endocytic vesicle formation is predominantly from not flat-membrane-to-round-vesicle transformation but calcium-triggered and dynamin-mediated closure of (1) Ω profiles formed before depolarization and (2) fusion pores (called kiss-and-run). Varying calcium influxes control the speed, number, and vesicle size of these pore closures, resulting in speed-specific slow (more than ∼6 s), fast (less than ∼6 s), or ultrafast (<0.6 s) endocytosis, amount-specific compensatory endocytosis (endocytosis = exocytosis) or overshoot endocytosis (endocytosis > exocytosis), and size-specific bulk endocytosis. These findings reveal major membrane transformation mechanisms underlying endocytosis, diverse endocytic modes, and exocytosis-endocytosis coupling, calling for correction of the half-a-century concept that the flat-to-round transformation predominantly mediates endocytosis after physiological stimulation.


Assuntos
Células Cromafins/fisiologia , Células Cromafins/ultraestrutura , Endocitose/fisiologia , Células Neuroendócrinas/fisiologia , Células Neuroendócrinas/ultraestrutura , Animais , Sinalização do Cálcio , Bovinos , Fusão Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Sistemas Computacionais , Dinaminas/fisiologia , Exocitose/fisiologia , Fusão de Membrana , Cultura Primária de Células , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa