RESUMO
Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores DopaminérgicosRESUMO
This study describes the development of a highly sensitive amperometric biosensor for the analysis of phenolic compounds such as catechol. The biosensor architecture is based on the immobilization of tyrosinase (Tyr) on a screen-printed carbon electrode (SPE) modified with nanodiamond particles (ND), 1-butyl-3-methylimidazolium hexafluorophosphate (IL) and poly-l-lysine (PLL). Surface morphologies of the electrodes during the modification process were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical characteristics of the modified electrodes. Owing to the synergistic effect of the modification materials, the Tyr/PLL/ND-IL/SPE exhibited high sensitivity (328.2 µA mM-1) towards catechol with a wide linear range (5.0 × 10-8 - 1.2 × 10-5 M) and low detection limit (1.1 × 10-8 M). Furthermore, the method demonstrated good reproducibility and stability. The amperometric response of the biosensor towards other phenolic compounds such as bisphenol A, phenol, p-nitrophenol, m-cresol, p-cresol and o-cresol was also investigated. The analytical applicability of the biosensor was tested by the analysis of catechol in tap water. The results of the tap water analysis showed that the Tyr/PLL/ND-IL/SPE can be used as a practical and effective method for catechol determination.
Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanodiamantes , Líquidos Iônicos/análise , Polilisina , Reprodutibilidade dos Testes , Fenóis/análise , Catecóis/análise , Catecóis/química , Monofenol Mono-Oxigenase/química , Carbono/química , Água , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodosRESUMO
The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.
Assuntos
Memória de Longo Prazo , Memória , Animais , Memória/fisiologia , Condicionamento Clássico , Fatores de Tempo , Lymnaea/fisiologia , Condicionamento OperanteRESUMO
BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.
Assuntos
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptose , Leucemia/tratamento farmacológico , NecroseRESUMO
Oral ulcers are a common oral mucosal disease that seriously affect the quality of life. Traditional drug treatments have shown unsatisfactory efficacy and potential adverse reactions. In this study, curcumin-loaded multifunctional magnesium metal-organic framework-embedded hyaluronic acid-soluble microneedles patches were developed to optimize treatment strategies for oral ulcers. This microneedles patch achieves efficient release of curcumin and Mg2+ in the ulcer through precisely targeted delivery and controllable release mechanism, significantly regulates inflammation, promotes cell migration and angiogenesis, and accelerates the ulcer healing process. At the same time, the synergistic effect of curcumin and gallic acid effectively alleviated oxidative stress, while the backplate ε-poly-L-lysine and needle tip Mg2+ jointly constructed an antibacterial barrier to effectively inhibit pathogens. Verification using an oral ulcer rat model showed that the microneedles patch exhibited excellent therapeutic effects. This not only opens up a new avenue for clinical oral treatment but also marks a breakthrough in nanobiomaterials science and drug delivery technology and heralds a broad prospect in the field of oral ulcer treatment in the future.
Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Magnésio , Estruturas Metalorgânicas , Agulhas , Úlceras Orais , Cicatrização , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Animais , Estruturas Metalorgânicas/química , Úlceras Orais/tratamento farmacológico , Ratos , Cicatrização/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Masculino , Humanos , Ácido Hialurônico/química , Estresse Oxidativo/efeitos dos fármacosRESUMO
OBJECTIVES: This study aimed to explore multiple effects of hyperbranched poly-l-lysine (HBPL) titanium (Ti) surfaces on osseointegration, bacteriostasis, and anti-inflammation across three different animal models. METHODS: Ti surfaces were covalently modified with HBPL, with uncoated surfaces as controls. Characterization included scanning electron microscopy (SEM) and surface chemistry and elemental analysis (EDX). Ti and Ti-HBPL implants were placed in conventional canine edentulous sites, post-operative infection canine edentulous sites, and diabetic rat tibias. Implants from canine edentulous models were analyzed using micro-CT and histomorphometry to assess osseointegration at 8 weeks. Post-operative infection beagles were used to evaluate antibacterial efficacy through clinical parameters and bacterial cultures at 1 week. In diabetic rats, micro-CT and histomorphometry were performed at 8 weeks. RESULTS: HBPL was uniformly grafted on Ti-HBPL surfaces. Ti-HBPL surfaces showed higher bone volume/total volume (BV/TV, p < 0.001), bone-implant contact (BIC%, p < 0.001), and trabecular number (Tb.N, p < 0.01) in beagles. Besides, it displayed higher BIC% (p < 0.001) and bone area fraction occupancy (BAFO%, p < 0.01) in hard tissue sections. In an infected model, Ti-HBPL surfaces exhibited lower bleeding on probing (BOP, p < 0.001), and plaque index (DI, p < 0.01), with reduced bacterial colony formation (p < 0.001) compared to the control group. In diabetic rats, Ti-HBPL surfaces showed an increase in BV/TV (p < 0.01) and Tb.N (p < 0.001), downregulated TNF-α and IL-1ß (p < 0.01), and upregulated IL-10 (p < 0.01) and osteocalcin (OCN) expression (p < 0.01). CONCLUSIONS: HBPL-Ti surfaces demonstrated enhanced osseointegration, bacteriostasis, and anti-inflammatory effects in vivo.
RESUMO
Most predictive models that use alternatives to animal experiments divide judgements into two classes with a cutoff value for each model. However, if the results of alternative methods are close to the cutoff values, the true result may be ambiguous because of variability in the data. Therefore, the OECD GL497 uses a judgement method that establishes a borderline range (BR) around a cutoff value using a statistical method. However, because there is no detailed description of how the BR is calculated, we clarified two specific points. The scale-constant correction method was used to calculate the median absolute deviation (MAD) around the median. In addition, the bottom-raised transformation method was used when the data were "0" because calculation of the BR requires that all data are logarithmic. Indeed, the BRs for the amino acid derivative reactivity assay (ADRA), interleukin-8 reporter gene assay (IL-8 Luc), and epidermal sensitization assay (EpiSensA) were calculated using data from each validation study. The results showed that the BR for ADRA and IL-8 Luc ranged from 4.1 to 5.9 and 1.25 to 1.57, respectively. Furthermore, the BRs of four genes (ATF3, GCLM, DNAJB4, and IL-8) evaluated using EpiSensA ranged from 10.71 to 21.02, 1.64 to 2.45, 1.61 to 2.52, and 3.11 to 5.16, respectively. The difference (deviation) between the lower and upper BR limits and cutoff value for each alternative method were comparable to those of the alternative methods listed in the guidelines (DPRA, KerarinoSens, and h-CLAT) and thus were considered as adequate.
RESUMO
ε-Poly-l-lysine (ε-PL) is an effective antimicrobial peptide for controlling fungal plant diseases, exhibiting significant antifungal activity and safety. Despite its known efficacy, the potential of ε-PL in combating plant bacterial diseases remains underexplored. This study evaluated the effectiveness of ε-PL and its nanomaterial derivative in managing tomato bacterial spot disease caused by Pseudomonas syringae pv. tomato. Results indicated that ε-PL substantially inhibited the growth of Pseudomonas syringae pv. tomato. Additionally, when ε-PL was loaded onto attapulgite (encoded as ATT@PL), its antibacterial effect was significantly enhanced. Notably, the antibacterial efficiency of ATT@PL containing 18.80 µg/mL ε-PL was even close to that of 100 µg/mL pure ε-PL. Further molecular study results showed that, ATT@PL stimulated the antioxidant system and the salicylic acid signaling pathway in tomatoes, bolstering the plants disease resistance. Importantly, the nanocomposite demonstrated no negative effects on both seed germination and plant growth, indicating its safety and aligning with sustainable agricultural practices. This study not only confirmed the effectiveness of ε-PL in controlling tomato bacterial spot disease, but also introduced an innovative high antibacterial efficiency ε-PL composite with good bio-safety. This strategy we believe can also be used in improving other bio-pesticides, and has high applicability in agriculture practice.
Assuntos
Antibacterianos , Doenças das Plantas , Polilisina , Pseudomonas syringae , Compostos de Silício , Solanum lycopersicum , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Polilisina/farmacologia , Polilisina/química , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Silício/farmacologia , Compostos de Silício/química , Compostos de MagnésioRESUMO
The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.
Assuntos
Agaricus , Polilisina , Pseudomonas , Polilisina/farmacologia , Resistência à DoençaRESUMO
To improve the ε-PL production in wild-type strains of Streptomyces. albulus, Streptomyces. noursei, Streptomyces. rochei and Streptomyces. yunnanensis, the interspecific hybridization based on protoplast fusion was first performed. Two-species hybridizations failed to obtain hybrids with significant increase in ε-PL production, but four-species hybridizations succeed in acquiring many high-yield hybrids. 16S rDNA homology alignment and RAPD confirmed that the hybrid HX17 was restructured by integrating gene fragments from S. albulus and S. rochei with S. noursei as the carrier. S. noursei HX17 was subsequently suffered from mutagenesis and genome shuffling combining with multiple antibiotic resistance, and a mutant S. noursei GX6 was obtained with ε-PL yield of 2.23 g/L in shake-flask fermentation. In fed-batch fermentation, the ε-PL production of GX6 reached 47.2 g/L, which was increased by 95.6% to 136.8% over the wild parents. Ribosomal genes associated with antibiotics were sequenced and majority of mutant strains had mutations at different sites, indicating that the increase of antibiotic resistance was strongly associated with them. This research proved that combining interspecific hybridization with multiple antibiotic resistance was as an effective approach to rapidly improve the ε-PL production in Streptomyces species.
Assuntos
Polilisina , Streptomyces , Embaralhamento de DNA , Técnica de Amplificação ao Acaso de DNA Polimórfico , Resistência Microbiana a Medicamentos , Fermentação , Streptomyces/genéticaRESUMO
ε-Poly-L-lysine (ε-PL) is a natural and wide-spectrum antimicrobial additive. In this study, the production of ε-PL by Streptomyces albulus FQF-24 using cassava starch (CS) as carbon source and the effects of different feeding methods were investigated in a fermenter. The initial shake flask experiments demonstrated the efficient production of ε-PL with CS, achieving the ε-PL production of 1.18 g/L. Subsequent investigations in the fermenter identified that the ideal pH was 3.8 during the ε-PL synthesis phase. Under this condition, the production of ε-PL reached 1.35 g/L. When the pH was maintained at 3.8, the investigation of improvement of feeding composition was carried out in a 5 L fermenter. The intermittent feeding containing CS, inorganic and organic nitrogen sources resulted in the maximum ε-PL production and dry cell weight (DCW) reaching 17.17 g/L and 42.73 g/L. Additionally, continuous feeding with the composition of CS, organic and inorganic nitrogen sources, and inorganic salts further increased ε-PL production and DCW to 27.56 g/L and 38.5 g/L. Summarily, the above results indicate that the fermentation using low-cost CS and continuous feeding strategy with whole medium composition can provide a beneficial reference for the efficient production of ε-PL.
Assuntos
Carbono , Manihot , Polilisina , Amido , Streptomyces , Streptomyces/metabolismo , Streptomyces/crescimento & desenvolvimento , Manihot/metabolismo , Polilisina/biossíntese , Amido/metabolismo , Carbono/metabolismo , Reatores Biológicos , FermentaçãoRESUMO
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.
Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Polarização de Fluorescência , Aflatoxina B1/análise , Aflatoxina B1/química , Aptâmeros de Nucleotídeos/química , Polarização de Fluorescência/métodos , Polieletrólitos/química , Técnicas Biossensoriais/métodos , Poliaminas/química , Limite de Detecção , Corantes Fluorescentes/químicaRESUMO
Antimicrobial resistance has become a major problem over the years and threatens to remain in the future, at least until a solution is found. Silver nanoparticles (Ag-NPs) and antimicrobial polymers (APs) are known for their antimicrobial properties and can be considered an alternative approach to fighting resistant microorganisms. Hence, the main goal of this research is to shed some light on the antimicrobial properties of Ag-NPs and APs (chitosan (CH), poly-L-lysine (PLL), ε-poly-L-lysine (ε-PLL), and dopamine (DA)) when used alone and complexed to explore the potential enhancement of the antimicrobial effect of the combination Ag-NPs + Aps. The resultant nanocomplexes were chemically and morphologically characterized by UV-visible spectra, zeta potential, transmission electron microscopy, and Fourier-transform infrared spectroscopy. Moreover, the Ag-NPs, APs, and Ag-NPs + APs nanocomplexes were tested against Gram-positive Staphylococcus aureus (S. aureus) and the Gram-negative Escherichia coli (E. coli) bacteria, as well as the fungi Candida albicans (C. albicans). Overall, the antimicrobial results showed potentiation of the activity of the nanocomplexes with a focus on C. albicans. For the biofilm eradication ability, Ag-NPs and Ag-NPs + DA were able to significantly remove S. aureus preformed biofilm, and Ag-NPs + CH were able to significantly destroy C. albicans biofilm, with both performing better than Ag-NPs alone. Overall, we have proven the successful conjugation of Ag-NPs and APs, with some of these formulations showing potential to be further investigated for the treatment of microbial infections.
Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Polímeros/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Assuntos
Aminoácido Oxirredutases , Antineoplásicos , Leucemia , Humanos , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase , Leucemia/tratamento farmacológico , Leucemia/genética , Lisina , Aminoácido Oxirredutases/uso terapêuticoRESUMO
Lysine N-pyrrolation, a posttranslational modification, which converts lysine residues to Nε-pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE-/-) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE-/- mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE-/- mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.
Assuntos
Apolipoproteínas E , Subpopulações de Linfócitos B , DNA , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Subpopulações de Linfócitos B/metabolismo , DNA/genética , DNA/metabolismo , Imunoglobulina M/metabolismo , Lisina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos BRESUMO
Over the past decades, antibiotic resistance has become a major clinical problem, and searching for new therapeutic strategies seems to be necessary. Using novel natural compounds, antimicrobial peptides, and bacteriophages is the most promising solution. In this study, various cationic metabolite-producer bacteria were isolated from different soil samples. Two isolates were identified as Stenotrophomonas maltophilia HS4 (accession number: MW791428) and Paenibacillus polymyxa HS5 (accession number: MW791430) based on biochemical characteristics and phylogenetic analysis using 16S rRNA gene sequences. The cationic compound in the fermentation broth was precipitated and purified with sodium tetraphenylborate salt. The purified cationic peptide was confirmed to be epsilon-poly-l-lysine by structural and molecular analysis using High-Performance Liquid Chromatography, Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis, and Fourier-transform infrared spectroscopy. The antibacterial activity of epsilon-poly-l-lysine was evaluated against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Serratia marcescens ATCC 13880, and Klebsiella pneumoniae ATCC 13883 by microdilution method. Furthermore, the antibacterial effects of purified epsilon-poly-l-lysine in combination with two long non-contractile tail bacteriophages against vancomycin-resistant Enterococcus faecalis and colistin-resistant Klebsiella pneumoniae were investigated. The results indicated great antibacterial activity of epsilon-poly-l-lysine which was produced by two novel bacteria. The epsilon-poly-l-lysine as a potent cationic antimicrobial peptide is demonstrated to possess great antimicrobial activity against pathogenic and also antibiotic-resistant bacteria.
Assuntos
Paenibacillus polymyxa , Stenotrophomonas maltophilia , Polilisina/farmacologia , Polilisina/química , Polilisina/genética , Stenotrophomonas maltophilia/genética , Paenibacillus polymyxa/genética , RNA Ribossômico 16S/genética , Filogenia , Antibacterianos/farmacologia , Bactérias/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: L-lysine is widely used for feed and special diet products. The transformation of fermentation strains plays a decisive role in the development of these industries. Based on the mutation breeding theory and metabolic engineering methods, this study aimed to improve the regeneration rate of high-lethality protoplasts by combining multiple mutagenesis and homologous cell fusion techniques to efficiently concentrate multiple dominant mutations and optimize the L-lysine production strain Escherichia coli QDW. RESULTS: In order to obtain the best protoplasts, the optimal enzymolysis time was selected as 4 h. The optimal lysozyme concentration was estimated at 0.8 mg/mL, because the protoplast formation rate and regeneration rate reached 90% and 30%, respectively, and their product reached the maximum. In this study, it was necessary that UV mutagenesis be excessive to obtain an expanded mutation library. For high lethality protoplasts, under the premise of minimal influence on its recovery, the optimal time for UV mutagenesis of protoplasts was 7 min, and the optimal time for thermal inactivation of protoplasts at 85 â was 30 min. After homologous fusion, four fusion strains of E. coli were obtained, and their stability was analyzed by flow cytometry. The L-lysine yield of QDW-UH3 increased by 7.2% compared with that of QDW in a fermentation experiment, which promoted the expression of key enzymes in L-lysine synthesis, indicating that the combination of ultraviolet mutagenic breeding and protoplast fusion technology improved the acid-production level of the fusion strain. CONCLUSION: This method provides a novel approach for the targeted construction of microbial cell factories.
Assuntos
Lisina , Protoplastos , Fermentação , Protoplastos/metabolismo , Lisina/genética , Lisina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RegeneraçãoRESUMO
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 180 mmol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Assuntos
Corynebacterium glutamicum , Pró-Fármacos , Engenharia Metabólica , Corynebacterium glutamicum/metabolismo , Pró-Fármacos/metabolismo , Lisina/genética , Oxirredutases/metabolismo , Glucose/genética , Glucose/metabolismo , FermentaçãoRESUMO
MicroRNAs (miRNAs) play an important role in learning and memory formation by controlling the expression of genes through epigenetic processes. Although miRNAs unquestionably play a role in memory, past literature focusing on whether miRNAs play key roles in the consolidation of associative long-term memory in Lymnaea contained confounding variables. Using operant conditioning of aerial respiratory behaviour, we investigated long-term memory (LTM) formation after injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated miRNA biogenesis, in Lymnaea stagnalis. Homeostatic breathing experiments were also performed to test whether PLL affects breathing. Homeostatic breathing was significantly suppressed 45 min but not 24 h after PLL injection. The operant conditioning procedure involved two 30-min training sessions separated by 1 h to cause LTM. Using this operant conditioning procedure, LTM formation was significantly impaired when snails were injected with PLL 15 min after the second training session. In contrast, when snails were injected with PLL 24 h before the first training session, LTM formation was not impaired. These results are consistent with past literature and highlight an important role for miRNAs in LTM formation.
Assuntos
Condicionamento Operante , Lymnaea , Memória de Longo Prazo , MicroRNAs , Animais , Lymnaea/fisiologiaRESUMO
Amino acids which are essential nutrients for all cell types' survival are also recognised to serve as opportunistic/alternative fuels in cancers auxotrophic for specific amino acids. Accordingly, restriction of amino acids has been utilised as a therapeutic strategy in these cancers. Contrastingly, amino acid deficiencies in cancer are found to greatly impair immune functions, increasing mortality and morbidity rates. Dietary and supplemental amino acids in such conditions have revealed their importance as 'immunonutrients' by modulating cellular homeostasis processes and halting malignant progression. L-arginine specifically has attracted interest as an immunonutrient by acting as a nodal regulator of immune responses linked to carcinogenesis processes through its versatile signalling molecule, nitric oxide (NO). The quantum of NO generated directly influences the cytotoxic and cytostatic processes of cell cycle arrest, apoptosis, and senescence. However, L-lysine, a CAT transporter competitor for arginine effectively limits arginine input at high L-lysine concentrations by limiting arginine-mediated effects. The phenomenon of arginine-lysine antagonism can, therefore, be hypothesised to influence the immunonutritional effects exerted by arginine. The review highlights aspects of lysine's interference with arginine-mediated NO generation and its consequences on immunonutritional and anti-cancer effects, and discusses possible alternatives to manage the condition. However, further research that considers monitoring lysine levels in arginine immunonutritional therapy is essential to conclude the hypothesis.