Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(5): e2214655120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689658

RESUMO

In parallel with pronounced cooling in the oceans, vast areas of the continents experienced enhanced aridification and restructuring of vegetation and animal communities during the Late Miocene. Debate continues over whether pCO2-induced global cooling was the primary driver of this climate and ecosystem upheaval on land. Here we present an 8 to 5 Ma land surface temperatures (LST) record from East Asia derived from paleosol carbonate clumped isotopes and integrated with climate model simulations. The LST cooled by ~7 °C between 7.5 and 5.7 Ma, followed by rapid warming across the Miocene-Pliocene transition (5.5 to 5 Ma). These changes occurred synchronously with variations in alkenone and Mg/Ca-based sea surface temperatures and with hydroclimate and ecosystem shifts in East Asia, highlighting a global climate forcing mechanism. Our modeling experiments additionally demonstrate that pCO2-forced cooling would have altered moisture transfer and pathways and driven extensive aridification in East Asia. We, thus, conclude that the East Asian hydroclimate and ecosystem shift was primarily controlled by pCO2-forced global cooling between 8 and 5 Ma.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Clima , Ásia Oriental , Temperatura
2.
Environ Res ; 246: 118058, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160978

RESUMO

The escalating contradiction between global urban development and thermal environments has become increasingly apparent, underscoring the imperative to address social inequality in heat exposure and advocate for environmental justice (EJ) in the pursuit of sustainable urban development. To bridge the research gap in this domain, a comprehensive study was conducted to examine the correlation mechanism linking the thermal environment with the socioeconomic status (SES) of Chinese cities, employing Hangzhou as a representative case-a pivotal city among China's "four fire stoves". The investigation involved analyzing the spatial distribution pattern of diurnal Land Surface Temperature (LST) during the summer months spanning 2016 to 2018 (July to September). For SES characterization, a holistic indicator was established. Community-level LST variables were derived from LST surfaces obtained through the Terra and Aqua satellite MODIS sensors, with the community serving as the fundamental unit of analysis. The relationship between SES and LST was explored using random forest regression (RF), eXtreme Gradient Boosting (XGBoost), and support vector regression (SVR) to assess socioeconomic inequality in urban heat. The findings reveal that (1) RF exhibits the highest fitting accuracy and adeptly elucidates the nonlinear relationship and marginal effects between LST variables and SES. (2) Community SES in the Hangzhou metropolitan area exhibits spatial clustering. (3) Residents of low and middle SES communities experience heightened heat inequality. (4) A complex nonlinear relationship exists between daytime and nighttime LST and SES, with significant social disparities in urban heat within specific temperature thresholds. When deciding on measures to advance thermal environmental justice, it is crucial to prioritize both relatively disadvantaged groups and specific temperature intervals. This study departs from conventional approaches, exploring the nonlinear relationship between SES and urban heat at a fine scale, thereby assisting urban planners in developing effective strategies.


Assuntos
Monitoramento Ambiental , Temperatura Alta , Cidades , Temperatura , China
3.
Environ Res ; 249: 118331, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325774

RESUMO

The development of urbanization and the establishment of metropolitan areas causes the urban heat island to cross the original single-city scale and form a regional heat island (RHI) with a larger influence range. Due to the decreasing distance between cities, there is an urgent need to reevaluate RHI for urban agglomerations, considering all cities instead of a conventional single-city perspective. The impact of climatic conditions and human factors on heat islands still lacks a general method and framework for systematic evaluation. Therefore, we used land and night light data as background conditions to study the diurnal and seasonal changes of heat islands in the Zhengzhou metropolitan area, China. Pearson correlation analysis and random forest regression analysis were then used to explore the influence of climatic conditions and human factors on RHI and its internal relationship. We found that the daytime RHI had strong spatial heterogeneity and seasonal differences from 2001 to 2020. The daytime RHI was stronger than nighttime in spring, summer, and autumn, and the nighttime RHI was stronger than daytime in winter. From spring to winter, RHI increased first and then decreased during the daytime, while the opposite was observed at night. In this study, temperature has a greater effect on daytime RHI; CO2 and NL have a greater effect on nighttime RHI. There was strong spatial heterogeneity in the effects of climatic conditions and human factors on the RHI, with climatic conditions contributing more to the daytime RHI in the northern mountainous areas, while human factors had a greater impact on the nighttime RHI in the main urban areas of each location. The results of this study highlight more targeted and informed strategies for RHI mitigation in the Zhengzhou metropolitan area and provide helpful insights into RHI evaluation in other urban agglomerations.


Assuntos
Cidades , Temperatura Alta , China , Humanos , Clima , Urbanização , Estações do Ano , Mudança Climática
4.
Environ Res ; 250: 118483, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373553

RESUMO

Reports on Groundwater level variations and quality changes have been a critical issue, especially in arid regions. An attempt has been made in this study to determine the surface manifestations of groundwater variations through processing imageries for determining the changes in land use, Normalized Differential Building Index (NDBI), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), along with Groundwater level (GWL) and Electrical conductivity (EC). Decadal variation between these parameters for 2013 and 2023 shows that the average water level had increased by 1.03amsl, while the EC values of groundwater decreased by 418 µS/cm. The decrease in EC values indicates freshwater recharge, promoting natural vegetation, thus reducing the LST values by 3.28 °C. In addition, urban landscaping and relatively lesser emissivity from built-up surfaces than the sandy desert have further reduced the LST. The interrelationship of the parameters indicates that an increase in LST correlates with an increase in NDBI and with less significant changes in NDVI. The lowering of the LST along the coastal regions was inferred to be due to the influence of Sea breeze, adjacent moisture from the ocean, shallow water level, and the shadow effect of the buildings. Further, the increase in water level was mainly attributed to the recent increase in rainfall and the extreme event in 2018. The higher EC in the lesser NDBI regions is attributed to the anthropogenic contamination from agriculture and landfill leachates. Though there was an increase in NDBI, the LST of the region was inferred to be reduced mainly due to the increase in water level and reduction of emission from desert sand by recent urban developments.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Água Subterrânea/análise , Água Subterrânea/química , Monitoramento Ambiental/métodos , Microclima , Clima Desértico , Temperatura , China , Condutividade Elétrica
5.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544194

RESUMO

A surface urban heat island (SUHI) is a phenomenon whereby temperatures in urban areas are significantly higher than that of surrounding rural and natural areas due to replacing natural and semi-natural areas with impervious surfaces. The phenomenon is evaluated through the SUHI intensity, which is the difference in temperatures between urban and non-urban areas. In this study, we assessed the spatial and temporal dynamics of SUHI in two urban areas of the French Guiana, namely Ile de Cayenne and Saint-Laurent du Maroni, for the year 2020 using MODIS-based gap-filled LST data. Our results show that the north and southwest of Ile de Cayenne, where there is a high concentration of build-up areas, were experiencing SUHI compared to the rest of the region. Furthermore, the northeast and west of Saint-Laurent du Maroni were also hotspots of the SUHI phenomenon. We further observed that the peak of high SUHI intensity could reach 5 °C for both Ile de Cayenne and Saint-Laurent du Maroni during the dry season when the temperature is high with limited rainfall. This study sets the stage for future SUHI studies in French Guiana and aims to contribute to the knowledge needed by decision-makers to achieve sustainable urbanization.

6.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475140

RESUMO

Land Surface Temperature (LST) is an important resource for a variety of tasks. The data are mostly free of charge and combine high spatial and temporal resolution with reliable data collection over a historical timeframe. When remote sensing is used to provide LST data, such as the MODA11 product using information from the MODIS sensors attached to NASA satellites, data acquisition can be hindered by clouds or cloud shadows, occluding the sensors' view on different areas of the world. This makes it difficult to take full advantage of the high resolution of the data. A common solution to interpolating LST data is statistical interpolation methods, such as fitting polynomials or thin plate spine interpolation. These methods have difficulties in incorporating additional knowledge about the research area and learning local dependencies that can help with the interpolation process. We propose a novel approach to interpolating remote sensing LST data in a fixed research area considering local ground-site air temperature measurements. The two-step approach consists of learning the LST from air temperature measurements, where the ground-site weather stations are located, and interpolating the remaining missing values with partial convolutions within a U-Net deep learning architecture. Our approach improves the interpolation of LST for our research area by 44% in terms of RMSE, when compared to state-of-the-art statistical methods. Due to the use of air temperature, we can provide coverage of 100%, even when no valid LST measurements were available. The resulting gapless coverage of high resolution LST data will help unlock the full potential of remote sensing LST data.

7.
J Environ Manage ; 366: 121595, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991348

RESUMO

Atmospheric heat has become a major public concern in a rapidly warming world. Evapotranspiration, however, provides effective land surface cooling during the vegetation period. Adversely, modern cultural landscapes - due to both water and potential evapotranspiration pathways lacking - are increasingly incapable of offering this important benefit. We hypothesised that concerted measures for a revived landscape water retention can fuel plant transpiration, especially during dry periods, and thus contribute to climate change adaptation by stabilising the regional climate. Seeking nature-based ways to an improved landscape water retention, we used the land surface temperature (LST) as a proxy for landscape mesoclimate. For our drought-prone rural study area, we identified potential candidate environmental predictors for which we established statistical relationships to LST. We then, from a set of potential climate change adaptation measures, mapped selected items to potential locations of implementation. Building on that, we evaluated a certain measures' probable cooling effect using (i) the fitted model and (ii) the expected expression of predictors before and after a hypothetical measure implementation. In the modelling, we took into account the spatial and temporal autocorrelation of the LST data and thus achieved realistic parameter estimates. Using the candidate predictor set and the model, we were able to establish a ranking of the effectiveness of climate adaptation measures. However, due to the spatial variability of the predictors, the modelled LST is site-specific. This results in a spatial differentiation of a measure's benefit. Furthermore, seasonal variations occur, such as those caused by plant growth. On average, the afforestation of arable land or urban brownfields, and the rewetting of former wet meadows have the largest cooling capacities of up to 3.5 K. We conclude that heat countermeasures based on fostering both evapotranspiration and landscape water retention, even in rural regions, offer promising adaptation ways to atmospheric warming.

8.
J Environ Manage ; 358: 120925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640755

RESUMO

Understanding the factors that cause fire is crucial for minimizing the fire risk. In this research, a comprehensive approach was adopted to recognize factors influencing forest fires. Golestan National Park (GNP) was considered as a representative area with a humid climate in this study. Initially, using the Multi-Criteria Evaluation Method, a fire risk map was created by analyzing natural and human factors, and vulnerable areas were identified. Then, the relationship between key elements such as meteorological conditions, Land Surface Temperature (LST), and precipitation, with the occurrence of fire in different years was investigated. CHIRPS and Landsat data were utilized to assess LST changes and precipitation. 23-year changes in fire occurrence areas in GNP were acquired using MODIS products. The results of the data analysis showed that the highest number of fires occurred in forest areas, and in the fire risk prediction map, the extremely high-risk class is completely consistent with the ground truth data. The assigned weights, derived from expert opinions, highlight the substantial significance of elevation, and distance from roads and settlements. Additionally, the effectiveness of the model in providing reliable forecasts for fire risks in GNP is highlighted by the ROC curve with an AUC value of 0.83. Forest fires within GNP exhibit a distinct seasonality, predominantly occurring from July to December. During the warmer months, by coinciding with summer excursions, human activities may contribute to the ignition of fires. In 2013 and 2014, rising fire incidents correlated with elevated temperatures, hinting at a potential connection. GNP fires showed an upward trend with higher monthly LST and a downward trend with increased annual precipitation. The results showed that there is a relationship between LST, precipitation, and the occurrence of fire in GNP. Approximately 176.15 ha of GNP's forest areas have been destroyed by fires over the last two decades. This research demonstrated that there is a dynamic interaction between environmental conditions and fire incidents. By considering these factors, managers and environmental planners can develop effective strategies for managing and preventing forest fire risks.


Assuntos
Incêndios , Florestas , Medição de Risco , Incêndios Florestais , Humanos , Temperatura
9.
J Environ Manage ; 350: 119636, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016233

RESUMO

The continuous increase of urbanization and industrialization brought various climatic changes, leading to global warming. The unavailability of meteorological data makes remotely sensed data important for understanding climate change. Therefore, the land surface temperature (LST) is critical in understanding global climate changes and related hydrological processes. The main objective of this work is to explore the dominant drivers of land use and hydrologic indices for LST in drainage and non-drainage areas. Specifically, the relationship between LST changes, land use, and hydrologic indices in Northeast Qena, Egypt, was investigated. The Landsat 5 and 8 imagery, Geographic Information System (GIS), and R-package were applied to identify the change detection during 2000-2021. The normalized difference between vegetation index (NDVI), bare soil index (BSI), normalized difference built-up, built-up index (BUI), modified normalized difference water index (MNDWI), and soil-adjusted vegetation index (SAVI) were employed. The non-drainage or mountain areas were found to be more susceptible to high LST values. The comprehensive analysis and assessment of the spatiotemporal changes of LST indicated that land use and hydrologic indices were driving factors for LST changes. Considerably, LST retrieved from the Landsat imaginary showed significant variation between the maximum LST during 2000 (44.82°C) and 2021 (50.74°C). However, NDBI has got less spread during the past (2000) with 10-13%. A high negative correlation was observed between the LST and NDVI, while the SAVI and LST positively correlated. The results of this study provide relevant information for environmental planning to local management authorities.


Assuntos
Mudança Climática , Monitoramento Ambiental , Temperatura , Monitoramento Ambiental/métodos , Meio Ambiente , Urbanização , Solo , Cidades
10.
Environ Monit Assess ; 196(6): 555, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760511

RESUMO

Bangladesh, a third-world country with the seventh highest population density in the world, has always struggled to ensure its residents' basic needs. But in recent years, the country is going through a serious humanitarian and financial crisis that has been imposed by the neighboring country Myanmar which has forced the government to shelter almost a million Rohingya refugees in less than 3 years (2017-2020). The government had no other option but to acquire almost 24.1 km2 of forest areas only to construct refugee camps for the Rohingyas which has led to catastrophic environmental outcomes. This study has analyzed the land use and land surface temperature pattern change of the Rohingya camp area for the course of 1997 to 2022 with a 5-year interval rate. Future prediction of the land use and temperature of Teknaf and Ukhiya was also done in this process using a machine learning algorithm for the years 2028 and 2034. The analysis says that in the camp area, from 1997 to 2017, percentage of settlements increased from 5.28 to 11.91% but in 2022, it reached 70.09%. The same drastically changing trend has also been observed in the land surface temperature analysis. In the month of January, the average temperature increased from 18.86 to 21.31 °C between 1997 and 2017. But in 2022. it was found that the average temperature had increased up to 25.94 °C in only a blink of an eye. The future prediction of land use also does not have anything pleasing in store.


Assuntos
Aprendizado de Máquina , Refugiados , Temperatura , Bangladesh , Refugiados/estatística & dados numéricos , Humanos , Mianmar , Monitoramento Ambiental/métodos
11.
Environ Monit Assess ; 196(8): 738, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009752

RESUMO

Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Imagens de Satélites , Estações do Ano , Temperatura , Monitoramento Ambiental/métodos , Aquecimento Global
12.
Environ Monit Assess ; 196(8): 706, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970725

RESUMO

The ability of the land surface temperature (LST) and normalized difference vegetation index (NDVI) to examine land surface change is regarded as an important climate variable. However, no significant systematic examination of urbanization concerning environmental variables has been undertaken in the narrow valley of Thimphu, Bhutan. Therefore, this study investigated the impact of land use/land cover (LULC) dynamics on LST, NDVI, and elevation, using Moderate Resolution Imaging Spectroradiometer (MODIS) data collected in Thimphu, Bhutan, from 2000 to 2020. The results showed that LSTs varied substantially among different land use types, with the highest occurring in built-up areas and the lowest occurring in forests. There was a strong negative linear correlation between the LST and NDVI in built-up areas, indicating the impact of anthropogenic activities. Moreover, elevation had a noticeable effect on the LST and NDVI, which exhibited very strong opposite patterns at lower elevations. In summary, LULC dynamics significantly influence LST and NDVI, highlighting the importance of understanding spatiotemporal patterns and their effects on ecological processes for effective land management and environmental conservation. Moreover, this study also demonstrated the applicability of relatively low-cost, moderate spatial resolution satellite imagery for examining the impact of urban development on the urban environment in Thimphu city.


Assuntos
Monitoramento Ambiental , Imagens de Satélites , Urbanização , Butão , Monitoramento Ambiental/métodos , Temperatura , Tecnologia de Sensoriamento Remoto , Cidades , Florestas , Conservação dos Recursos Naturais
13.
Environ Monit Assess ; 196(7): 627, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886252

RESUMO

The urban heat island (UHI) phenomenon is negatively impacted by rapid urbanization, which significantly affects people's everyday lives, socioeconomic activities, and the urban thermal environment. This study focuses on the impact of composition, configuration, and landscape patterns on land surface temperature (LST) in Lahore, Pakistan. The study uses Landsat 5-TM and Landsat 8-OLI/TIRS data acquired over the years 2000, 2010 and 2020 to derive detailed information on land use, normalized difference vegetation index, LST, urban cooling islands (UCI), green cooling islands (GCI) and landscape metrics at the class and landscape level such as percentage of the landscape (PLAND), patch density (PD), class area (CA), largest patch index (LPI), number of patches (NP), aggregation index (AI), Landscape Shape Index (LSI), patch richness (PR), and mean patch shape index (SHAPE_MN). The study's results show that from the years 2000 to 2020, the built-up area increased by 17.57%, whereas vacant land, vegetation, and water bodies declined by 03.79%, 13.32% and 0.4% respectively. Furthermore, landscape metrics at the class level (PLAND, LSI, LPI, PD, AI, and NP) show that the landscape of Lahore is becoming increasingly heterogeneous and fragmented over time. The mean LST in the study area exhibited an increasing trend i.e. 18.87°C in 2000, 20.93°C in 2010, and 22.54°C in 2020. The significant contribution of green spaces is vital for reducing the effects of UHI and is highlighted by the fact that the mean LST of impervious surfaces is, on average, roughly 3°C higher than that of urban green spaces. The findings also demonstrate that there is a strong correlation between mean LST and both the amount of green space (which is negative) and impermeable surface (which is positive). The increasing trend of fragmentation and shape complexity highlighted a positive correlation with LST, while all area-related matrices including PLAND, CA and LPI displayed a negative correlation with LST. The mean LST was significantly correlated with the size, complexity of the shape, and aggregation of the patches of impervious surface and green space, although aggregation demonstrated the most constant and robust correlation. The results indicate that to create healthier and more comfortable environments in cities, the configuration and composition of urban impermeable surfaces and green spaces should be important considerations during the landscape planning and urban design processes.


Assuntos
Cidades , Monitoramento Ambiental , Temperatura Alta , Urbanização , Paquistão
14.
Environ Monit Assess ; 196(2): 124, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195837

RESUMO

Urban Heat Islands (UHIs), Land Surface Temperature (LST), and Land Use Land Cover (LULC) changes are critical environmental concerns that require continuous monitoring and assessment, especially in cities within arid and semi-arid (ASA) climates. Despite the abundance of research in tropical, Mediterranean, and cold climates, there is a significant knowledge gap for cities in the Middle East with ASA climates. This study aimed to examine the effects of LULC change, population, and wind speed on LST in the Mashhad Metropolis, a city with an ASA climate, over a 30-year period. The research underscores the importance of environmental monitoring and assessment in understanding and mitigating the impacts of urbanization and climate change. Our research combines spatial regression models, multi-scale and fine-scale analyses, seasonal and city outskirts considerations, and long-term change assessments. We used Landsat satellite imagery, a crucial tool for environmental monitoring, to identify LULC changes and their impact on LST at three scales. The relationships were analyzed using Ordinary Least Squares (OLS) and Spatial Error Model (SEM) regressions, demonstrating the value of these techniques in environmental assessment. Our findings highlight the role of environmental factors in shaping LST. A decrease in vegetation and instability of water bodies significantly increased LST over the study period. Bare lands and rocky terrains had the most substantial effect on LST. At the same time, built-up areas resulted in Urban Cooling Islands (UCIs) due to their lower temperatures compared to surrounding bare lands. The Normalized Difference Vegetation Index (NDVI) and Dry Bare-Soil Index (DBSI) were the most effective indices impacting LST in ASA regions, and the 30×30 m2 micro-scale provides more precise results in regression models, underscoring their importance in environmental monitoring. Our study provided a comprehensive understanding of the relationship between LULC changes and LST in an ASA environment, contributing significantly to the literature on environmental change in arid regions and the methodologies for monitoring such changes. Future research should aim to validate and expand additional LST-affecting factors and test our approach and findings in other ASA regions, considering the unique characteristics of these areas and the importance of tailored environmental monitoring and assessment approaches.


Assuntos
Temperatura Alta , Regressão Espacial , Temperatura , Cidades , Monitoramento Ambiental , Análise de Regressão
15.
Glob Chang Biol ; 29(1): 110-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169920

RESUMO

Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.


Assuntos
Mudança Climática , Plantas , Temperatura
16.
Environ Res ; 237(Pt 2): 116887, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611782

RESUMO

The objective of this study was to analyze air pollution and thermal environment in Turkey's cold region before, during, and after COVID-19 in 2019, 2020 and 2021. The CO, NO2, O3, PM10 and SO2 data from the state air quality stations, as well as ground air temperature data from six weather stations, and land satellite images from the USGS website using ArcGIS 10.4.1 software were collected in January, March, April and August of 2019, 2020 an 2021. In order to evaluate the impact of COVID-19 measures and restrictions on cold region cities, air pollution indicators, land surface temperature and air temperature as well as statistical data were analyzed. The results indicated that the CO, NO2, PM10 and SO2 emissions decreased by 14.9%, 14.3%, 47.1% and 28.5%, but O3 increased by 16.9%, respectively, during the COVID-19 lockdown in 2020 as compared to these of the pre-COVID-19 levels in 2019. A positive correlation between air temperature and O3 in 2019 (r2 = 0.80), and in 2020 and 2021 (r2 = 0.64) was obtained. Air temperature in 2020 and 2021 decreased due to lockdowns and quarantine measures that led to lower O3 emissions as compared to 2019. Negative correlations were also found between air temperature and NO2 (r2 = 0.60) and SO2 (r2 = 0.5). There was no correlation between air temperature and PM10. During the COVID-19 lockdown and intense restrictions in April 2020, the average LST and air temperature values dropped by 14.7 °C and 1.6 °C respectively, compared to April 2019. These findings may be beneficial for future urban planning, particularly in cold regions.

17.
Environ Res ; 236(Pt 1): 116643, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442253

RESUMO

Increased vegetation peak growth and phenological shifts toward spring have been observed in response to climate warming in the temperate regions. Such changes have the potential to modify warming by perturbing land‒atmosphere energy exchanges; however, the signs and magnitudes of biophysical feedback on surface temperature in different biomes are largely unknown. Here, we synthesized information from vegetation growth proxies, land surface temperature (LST), and surface energy balance factors (surface evapotranspiration (ET), albedo, and broadband emissivity (BBE)) to investigate the variations in timing (PPT) and productivity (PPmax) of seasonal peak photosynthesis and their time-lagged biophysical feedbacks to the post-season LST in Inner Mongolia (IM) during 2001-2020. We found that increased PPmax, rather than advanced PPT, exhibited a significant impact on LST, with divergent signs and magnitudes across diurnal periods and among different biomes. In the grassland biome, increased PPmax cooled both LST during daytime (LSTday) and nighttime (LSTnight) throughout the post-season period, with a more pronounced response during daytime and diminishing gradually from July to September. This cooling effect on LST was primarily attributed to enhanced ET, as evidenced by the greater effect of ET cooling than that of albedo warming and BBE cooling based on a structural equation model (SEM). In the forest biome, increased PPmax led to a symmetrical warming effect on LSTday and LSTnight, and none of the surface energy balance factors were identified as significant intermediate explanatory factors for the observed warming effect. Moreover, the responses of average LST (LSTmean) and diurnal temperature range of LST (LSTDTR) to variations in PPmax were consistent with those of LSTday at two biomes. The observations above elucidate the divergent feedback mechanisms of vegetation peak growth on LST among different biomes and diurnal cycles, which could facilitate the improvement of the realistic parameterization of surface processes in global climate models.

18.
Environ Res ; 219: 115062, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535393

RESUMO

The commonly used weather stations cannot fully capture the spatiotemporal variability of near-surface air temperature (Tair), leading to exposure misclassification and biased health effect estimates. We aimed to improve the spatiotemporal coverage of Tair data in Germany by using multi-stage modeling to estimate daily 1 × 1 km minimum (Tmin), mean (Tmean), maximum (Tmax) Tair and diurnal Tair range during 2000-2020. We used weather station Tair observations, satellite-based land surface temperature (LST), elevation, vegetation and various land use predictors. In the first stage, we built a linear mixed model with daily random intercepts and slopes for LST adjusted for several spatial predictors to estimate Tair from cells with both Tair and LST available. In the second stage, we used this model to predict Tair for cells with only LST available. In the third stage, we regressed the second stage predictions against interpolated Tair values to obtain Tair countrywide. All models achieved high accuracy (0.91 ≤ R2 ≤ 0.98) and low errors (1.03 °C ≤ Root Mean Square Error (RMSE) ≤ 2.02 °C). Validation with external data confirmed the good performance, locally, i.e., in Augsburg for all models (0.74 ≤ R2 ≤ 0.99, 0.87 °C ≤ RMSE ≤ 2.05 °C) and countrywide, for the Tmean model (0.71 ≤ R2 ≤ 0.99, 0.79 °C ≤ RMSE ≤ 1.19 °C). Annual Tmean averages ranged from 8.56 °C to 10.42 °C with the years beyond 2016 being constantly hotter than the 21-year average. The spatial variability within Germany exceeded 15 °C annually on average following patterns including mountains, rivers and urbanization. Using a case study, we showed that modeling leads to broader Tair variability representation for exposure assessment of participants in health cohorts. Our results indicate the proposed models as suitable for estimating nationwide Tair at high resolution. Our product is critical for temperature-based epidemiological studies and is also available for other research purposes.


Assuntos
Temperatura Alta , Urbanização , Humanos , Temperatura , Modelos Lineares , Alemanha , Monitoramento Ambiental/métodos
19.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448080

RESUMO

This study examines the Land Surface Temperature (LST) trends in eight key Moroccan cities from 1990 to 2020, emphasizing the influential factors and disparities between coastal and inland areas. Geographically weighted regression (GWR), machine learning (ML) algorithms, namely XGBoost and LightGBM, and SHapley Additive exPlanations (SHAP) methods are utilized. The study observes that urban areas are often cooler due to the presence of urban heat sinks (UHSs), more noticeably in coastal cities. However, LST is seen to increase across all cities due to urbanization and the degradation of vegetation cover. The increase in LST is more pronounced in inland cities surrounded by barren landscapes. Interestingly, XGBoost frequently outperforms LightGBM in the analyses. ML models and SHAP demonstrate efficacy in deciphering urban heat dynamics despite data quality and model tuning challenges. The study's results highlight the crucial role of ongoing urbanization, topography, and the existence of water bodies and vegetation in driving LST dynamics. These findings underscore the importance of sustainable urban planning and vegetation cover in mitigating urban heat, thus having significant policy implications. Despite its contributions, this study acknowledges certain limitations, primarily the use of data from only four discrete years, thereby overlooking inter-annual, seasonal, and diurnal variations in LST dynamics.


Assuntos
Monitoramento Ambiental , Urbanização , Cidades , Monitoramento Ambiental/métodos , Temperatura , Temperatura Alta
20.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005592

RESUMO

Surface urban heat islands (SUHIs) are mostly an urban ecological issue. There is a growing demand for the quantification of the SUHI effect, and for its optimization to mitigate the increasing possible hazards caused by SUHI. Satellite-derived land surface temperature (LST) is an important indicator for quantifying SUHIs with frequent coverage. Current LST data with high spatiotemporal resolution is still lacking due to no single satellite sensor that can resolve the trade-off between spatial and temporal resolutions and this greatly limits its applications. To address this issue, we propose a multiscale geographically weighted regression (MGWR) coupling the comprehensive, flexible, spatiotemporal data fusion (CFSDAF) method to generate a high-spatiotemporal-resolution LST dataset. We then analyzed the SUHI intensity (SUHII) in Chengdu City, a typical cloudy and rainy city in China, from 2002 to 2022. Finally, we selected thirteen potential driving factors of SUHIs and analyzed the relation between these thirteen influential drivers and SUHIIs. Results show that: (1) an MGWR outperforms classic methods for downscaling LST, namely geographically weighted regression (GWR) and thermal image sharpening (TsHARP); (2) compared to classic spatiotemporal fusion methods, our method produces more accurate predicted LST images (R2, RMSE, AAD values were in the range of 0.8103 to 0.9476, 1.0601 to 1.4974, 0.8455 to 1.3380); (3) the average summer daytime SUHII increased form 2.08 °C (suburban area as 50% of the urban area) and 2.32 °C (suburban area as 100% of the urban area) in 2002 to 4.93 °C and 5.07 °C, respectively, in 2022 over Chengdu City; and (4) the anthropogenic activity drivers have a higher relative influence on SUHII than other drivers. Therefore, anthropogenic activity driving factors should be considered with CO2 emissions and land use changes for urban planning to mitigate the SUHI effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa