Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Small ; 20(4): e2306602, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705120

RESUMO

The shell growth of large ZnSe/ZnS nanocrystals( is of great importance in the pursuit of pure-blue emitters for display applications, however, suffers from the challenges of spectral blue-shifts and reduced photoluminescence quantum yields. In this work, the ZnS shell growth on different-sized ZnSe cores is investigated. By controlling the reactivity of Zn and S precursors, the ZnS shell growth can be tuned from defect-related strain-released to defect-free strained mode, corresponding to the blue- and red-shifts of resultant nanocrystals respectively. The shape of strain-released ZnSe/ZnS nanocrystals can be kept nearly spherical during the shell growth, while the shape of strained nanocrystals evolutes from spherical into island-like after the critical thickness. Furthermore, the strain between ZnSe core and ZnS shell can convert the band alignment from type-I into type-II core/shell structure, resulting in red-shifts and improved quantum yield. By correlating the strain effects with interfacial defects, a strain-released shell growth model is proposed to obtain large ZnSe/ZnS nanocrystals with isotropic shell morphology.

2.
Sensors (Basel) ; 24(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793892

RESUMO

Modern UAVs (unmanned aerial vehicles) equipped with video cameras can provide large-scale high-resolution video data. This poses significant challenges for structure from motion (SfM) and simultaneous localization and mapping (SLAM) algorithms, as most of them are developed for relatively small-scale and low-resolution scenes. In this paper, we present a video-based SfM method specifically designed for high-resolution large-size UAV videos. Despite the wide range of applications for SfM, performing mainstream SfM methods on such videos poses challenges due to their high computational cost. Our method consists of three main steps. Firstly, we employ a visual SLAM (VSLAM) system to efficiently extract keyframes, keypoints, initial camera poses, and sparse structures from downsampled videos. Next, we propose a novel two-step keypoint adjustment method. Instead of matching new points in the original videos, our method effectively and efficiently adjusts the existing keypoints at the original scale. Finally, we refine the poses and structures using a rotation-averaging constrained global bundle adjustment (BA) technique, incorporating the adjusted keypoints. To enrich the resources available for SLAM or SfM studies, we provide a large-size (3840 × 2160) outdoor video dataset with millimeter-level-accuracy ground control points, which supplements the current relatively low-resolution video datasets. Experiments demonstrate that, compared with other SLAM or SfM methods, our method achieves an average efficiency improvement of 100% on our collected dataset and 45% on the EuRoc dataset. Our method also demonstrates superior localization accuracy when compared with state-of-the-art SLAM or SfM methods.

3.
Nano Lett ; 23(19): 9011-9019, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676743

RESUMO

Freeze-casting has been wildly exploited to construct porous ceramics but usually requires costly and demanding freeze-drying (high vacuum, size limit, and supercooled chamber), which can be avoided by the ambient pressure drying (APD) technique. However, applying APD to freeze-cast ceramic based on an aqueous suspension is still challenging due to inert surface chemistry. Herein, a modified APD strategy is developed to improve the drying process of freeze-cast ceramics by exploiting the simultaneous ice etching, ionic cross-linking, and solvent exchange under mild conditions (-10-0 °C, ambient pressure). This versatile strategy is applicable to various ceramic species, metal ions, and freezing techniques. The incorporated metal ions not only enhance liquid-phase sintering, producing ceramics with higher density and mechanical properties than freeze-cast counterparts, but also render customizable coloration and antibacterial property. The cost-/time-efficient APD is promising for mass production and even successive production of large-size freeze-cast ceramics that exceed the size of commercial freeze-dryers.

4.
Nano Lett ; 22(10): 3969-3975, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506587

RESUMO

Chromatic aberration is a major challenge faced by metalenses. Current methods to achieve broadband achromatic operation in metalenses usually suffer from limited size, numerical aperture, and working bandwidth due to the finite group delay of meta-atoms, thus restricting the range of practical applications. Multiwavelength achromatic metalenses can overcome those limitations, making it possible to realize larger numerical aperture (NA) and sizes simultaneously. However, they usually require three layers, which increases their fabrication complexity, and have only been demonstrated in small sizes, with low numerical aperture and modest efficiencies. Here, we demonstrate a 1 mm diameter red-green-blue achromatic metalens doublet with a designed NA of 0.8 and successfully apply the metalens in a digital imaging system. This work shows the potential of the doublet metasurfaces, extending their applications to digital imaging systems such as digital projectors, virtual reality glasses, high resolution microscopies, etc.


Assuntos
Processamento de Imagem Assistida por Computador , Lentes , Cor , Humanos , Processamento de Imagem Assistida por Computador/instrumentação
5.
Biometrics ; 78(3): 894-907, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33881782

RESUMO

Data with a huge size present great challenges in modeling, inferences, and computation. In handling big data, much attention has been directed to settings with "large p small n", and relatively less work has been done to address problems with p and n being both large, though data with such a feature have now become more accessible than before, where p represents the number of variables and n stands for the sample size. The big volume of data does not automatically ensure good quality of inferences because a large number of unimportant variables may be collected in the process of gathering informative variables. To carry out valid statistical analysis, it is imperative to screen out noisy variables that have no predictive value for explaining the outcome variable. In this paper, we develop a screening method for handling large-sized survival data, where the sample size n is large and the dimension p of covariates is of non-polynomial order of the sample size n, or the so-called NP-dimension. We rigorously establish theoretical results for the proposed method and conduct numerical studies to assess its performance. Our research offers multiple extensions of existing work and enlarges the scope of high-dimensional data analysis. The proposed method capitalizes on the connections among useful regression settings and offers a computationally efficient screening procedure. Our method can be applied to different situations with large-scale data including genomic data.


Assuntos
Genoma , Genômica , Modelos de Riscos Proporcionais , Tamanho da Amostra
6.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890779

RESUMO

This paper concerns the problem of vibration reduction during milling. For this purpose, it is proposed that the standard supports of the workpiece be replaced with adjustable stiffness supports. This affects the modal parameters of the whole system, i.e., object and its supports, which is essential from the point of view of the relative tool-workpiece vibrations. To reduce the vibration level during milling, it is necessary to appropriately set the support stiffness coefficients, which are obtained from numerous milling process simulations. The simulations utilize the model of the workpiece with adjustable supports in the convention of a Finite Element Model (FEM) and a dynamic model of the milling process. The FEM parameters are tuned based on modal tests of the actual workpiece. For assessing simulation results, the proper indicator of vibration level must be selected, which is also discussed in the paper. However, simulating the milling process is time consuming and the total number of simulations needed to search the entire available range of support stiffness coefficients is large. To overcome this issue, the artificial intelligence salp swarm algorithm is used. Finally, for the best combination of stiffness coefficients, the vibration reduction is obtained and a significant reduction in search time for determining the support settings makes the approach proposed in the paper attractive from the point of view of practical applications.

7.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746139

RESUMO

This paper proposes a low-computing-complexity touch signal detection method and analog front-end (AFE) circuits based on cross-correlation technology for large mutual capacitance touch screen panels (TSPs). To solve the traditional touch signal detection method problem of lots of invalid data being sampled and processed in a large-size TSP, the proposed method only samples and processes the signals around the touch points rather than full-screen data to decrease the computing complexity and analog-digital convertor (ADC) acquisition number. Compared with the traditional method, the proposed touch points search algorithm complexity decreases from MN to M + nN where M, N, and n are the number of RX channels, TX channels, and touch points, respectively. The maximum ADC acquisition number of the proposed method decreases from MN to 18n. Based on the proposed touch signal detection method, the AFE circuits are designed by a 0.11 µm process. The proposed dual cross-correlation AFE achieves detection of the weak touch signal submerged in the large display panel noise. The average channel area and power consumption are decreased to 0.015 mm2 and 0.227 mW, respectively. The maximum frame rate is 384.6 Hz with 10 touch points. The proposed cross-correlation AFE achieves a high frame rate while reducing the die area and power consumption.

8.
Sensors (Basel) ; 21(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435381

RESUMO

The multiple frequency driving method (MFDM) capacitive touch system (CTS), which drives transmit (TX) electrodes in parallel, has been developed to improve the touch-sensitivity of large touch screens at high speed. However, when driving multiple TX electrodes at the same time, TX signals are merged through the touch panel, which results in increasing the peak-to-average power ratio (PAPR) of combined signals. Due to the high PAPR, the signal is distorted out of the power amplifier's linear range, causing a touch malfunction. The MFDM CTS can avoid this problem by reducing the drive voltage or partially driving the TX electrodes in parallel. However, these methods cause a significant performance drop with respect to signal-to-noise ratio (SNR) in the MFDM systems. This paper proposes a stack method which reduces PAPR effectively without the performance degradation of MFDM and achieves real-time touch sensitivity in large display panels. The proposed method allocates a suitable phase for each TX electrode to reduce the peak power of combined signals. Instead of investigating all of the phases for the total number of TX electrodes, the optimal phase is estimated from the highest frequency to the lowest one and fixed one by one, which can reduce the required time to find a suitable phase considerably. As a result, it enables high-speed sensing of multi-touch on a large touch screen and effectively reduces PAPR to secure high signal-to-noise-ratio (SNR). Through experiments, it was verified that the proposed method in this paper has an SNR of 39.36 dB, achieving a gain of 19.35 and 5.98 dB compared to the existing touch system method and the algorithm used in the communication system, respectively.

9.
BMC Med ; 18(1): 63, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32252740

RESUMO

BACKGROUND: Preterm birth, small size for gestational age (SGA) and large size for gestational age (LGA) at birth are major risk factors for neonatal and long-term morbidity and mortality. It is unclear which periods of pregnancy are optimal for ultrasound screening to identify fetuses at risk of preterm birth, SGA or LGA at birth. We aimed to examine whether single or combined second and third trimester ultrasound in addition to maternal characteristics at the start of pregnancy are optimal to detect fetuses at risk for preterm birth, SGA and LGA. METHODS: In a prospective population-based cohort among 7677 pregnant women, we measured second and third trimester estimated fetal weight (EFW), and uterine artery pulsatility and umbilical artery resistance indices as placenta flow measures. Screen positive was considered as EFW or placenta flow measure < 10th or > 90th percentile. Information about maternal age, body mass index, ethnicity, parity, smoking, fetal sex and birth outcomes was available from questionnaires and medical records. Screening performance was assessed via receiver operating characteristic (ROC) curves and area under the curve (AUC) along with sensitivity at different false-positive rates. RESULTS: Maternal characteristics only and in combination with second trimester EFW had a moderate performance for screening for each adverse birth outcome. Screening performance improved by adding third trimester EFW to the maternal characteristics (AUCs for preterm birth 0.64 (95%CI 0.61 to 0.67); SGA 0.79 (95%CI 0.78 to 0.81); LGA 0.76 (95%CI 0.75; 0.78)). Adding third trimester placenta measures to this model improved only screening for risk of preterm birth (AUC 0.72 (95%CI 0.66 to 0.77) with sensitivity 37% at specificity 90%) and SGA (AUC 0.83 (95%CI 0.81 to 0.86) with sensitivity 55% at specificity 90%). Combining second and third trimester fetal and placental ultrasound did not lead to a better performance as compared to using only third trimester results. CONCLUSIONS: Combining single third trimester fetal and placental ultrasound results with maternal characteristics has the best screening performance for risks of preterm birth, SGA and LGA. As compared to second trimester screening, third trimester screening may double the detection of fetuses at risk of common adverse birth outcomes.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Segundo Trimestre da Gravidez/fisiologia , Terceiro Trimestre da Gravidez/fisiologia , Nascimento Prematuro/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Adulto , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Gravidez , Cuidado Pré-Natal , Estudos Prospectivos , Adulto Jovem
10.
Small ; 16(13): e1906734, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115877

RESUMO

Large-size ultrathin 2D materials, with extensive applications in optics, medicine, biology, and semiconductor fields, can be prepared through an existing common physical and chemical process. However, the current exfoliation technologies still need to be improved upon with urgency. Herein, a novel and simple "ultrasonic-ball milling" strategy is reported to effectively obtain high quality and large size ultrathin 2D materials with complete lattice structure through the introduction of moderate sapphire (Al2 O3 ) abrasives in a liquid phase system. Ultimately numerous high-quality ultrathin h-BN, graphene, MoS2 , WS2 , and BCN nanosheets are obtained with large sizes ranging from 1-20 µm, small thickness of ≈1-3 nm and a high yield of over 20%. Utilizing shear and friction force synergistically, this strategy provides a new method and alternative for preparing and optimizing large size ultrathin 2D materials.


Assuntos
Ciência dos Materiais , Nanoestruturas , Ultrassom , Fricção , Grafite , Ciência dos Materiais/métodos , Nanoestruturas/química , Resistência ao Cisalhamento
11.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167373

RESUMO

This paper proposes a simple attitude trajectory optimization method to enhance the walking balance of a large-size hexapod robot. To achieve balance motion control of a large-size hexapod robot on different outdoor terrains, we planned the balance attitude trajectories of the robot during walking and introduced how leg trajectories are generated based on the planned attitude trajectories. While planning the attitude trajectories, high order polynomial interpolation was employed with attitude fluctuation counteraction considered. Constraints that the planned attitude trajectories must satisfy during walking were well-considered. The trajectory of the swing leg was well designed with the terrain attitude considered to improve the environmental adaptability of the robot during the attitude adjustment process, and the trajectory of the support leg was automatically generated to satisfy the demand of the balance attitude trajectories planned. Comparative experiments of the real large-size hexapod robot walking on different terrains were carried out to validate the effectiveness and applicability of the attitude trajectory optimization method proposed, which demonstrated that, compared with the currently developed balance motion controllers, the attitude trajectory optimization method proposed can simplify the control system design and improve the walking balance of a hexapod robot.

12.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867175

RESUMO

Automated and high-accuracy three-dimensional (3D) shape measurement is required in quality control of large-size components for the aerospace industry. To eliminate the contradiction between global measurement and local precision measurement control in 3D digitalization for the key local features of the large-size components, a combined measurement method is proposed, including a 3D scanner, a laser tracker, and an industrial robot used as an orienting device, to achieve high-accuracy measurement. As for improving the overall measurement accuracy, an accurate calibration method based on coordinate optimization of common points (COCP) and coordinate optimization of global control points (COGP) is proposed to determine the coordinate systems. Firstly, a coordinate optimization method of common points (COCP) is recommended. Then, a coordinate optimization method of global control points (COGP) based on the angular constraint is proposed for minimizing the measurement errors and improving the measurement accuracy of the position and orientation of the 3D scanner. Finally, a combined measurement system is established, and validation experiments are carried out in laboratory within a distance of 4 m. The calibration experiment results demonstrate that the max and mean errors of the coordinate transformation have been reduced from 0.037 and 0.022 mm to 0.021 and 0.0122 mm. Additionally, the measurement experiment results also show that the combined measurement system features high accuracy.

13.
Molecules ; 25(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349410

RESUMO

The powder-based 3DP (3D printing) technique has developed rapidly in creative and customized industries on account of it's uniqueness, such as low energy consumption, cheap consumables, and non-existent exhaust emissions. Moreover, it could actualize full-color 3D printing. However, the printing time and size are both in need of upgrade using ready printers, especially for large-size 3D printing objects. Given the above issues, the effects of height and monolayer area on printing time were explored and the quantitative relationship was given in this paper conducted on the specimens with a certain gradient. On this basis, an XYX rotation method was proposed to minimize the printing time. The mechanical tests were conducted with three impregnation types as well as seven printing angles and combined with the characterization of surface structure based on the scanning electron microscope (SEM) digital images to explore the optimum parameters of cutting-bonding frame (CBF) applied to powder-based 3D printing. Then, four adhesives were compared in terms of the width of bonded gap and chromatic aberration. The results revealed that ColorBond impregnated specimens showed excellent mechanical properties which reached maximum when printed at 45° to Z axis, and α-cyanoacrylate is the most suitable adhesive to bond full-color powder-based models. Finally, an operation technological process was summarized to realize the rapid manufacturing of large-size full-color 3D printed objects.


Assuntos
Testes Mecânicos/métodos , Impressão Tridimensional , Adesivos/química , Ciência dos Materiais , Microscopia Eletrônica de Varredura , Impressão Tridimensional/instrumentação , Software , Fatores de Tempo
14.
Sensors (Basel) ; 19(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405175

RESUMO

This article describes an innovative method for eliminating deformation in large crankshafts during measurement of their geometric condition. The currently available techniques for measuring crankshaft geometry are introduced and classified according to their applicability and the method of measurement. The drawbacks of the methods have been identified and a solution to these problems has been proposed. The influence of the rigid support of a shaft on its deformation, and thus on the reduction in the accuracy of crankshaft geometry measurements, has also been investigated. The concept and main versions of the proposed measuring system with active compensation for shaft deflection, by means of actuators cooperating with force transducers monitoring the deflection of individual crank journals of a crankshaft being measured, have been presented and the flexible support control system has also been described. The problems relating to the operation of the control system have been furnished along with a way to solve them, including the issue of noise reduction in the signal from the force transducer and the influence of the controller parameters on the operation of the flexible support. The computer system that controls the flexible supports has been briefly characterized, and the performance of the prototype system and the model reference system has been compared. The results have shown that the system is able to effectively eliminate the deflection and elastic deformation of the crankshaft under the influence of its own weight.

15.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766553

RESUMO

The present work focuses on the in-plane shear respond and failure mode of large size honeycomb sandwich composites which consist of plain weave carbon fabric laminate skins and aramid paper core. A special size specimen based on a typical element of aircraft fuselage was designed and manufactured. A modified in-plane shear test method and the corresponding fixture was developed. Three large size specimens were tested. The distributed strain gauges were used to monitor the mechanical response and ultimate bearing capacity. The results show that a linear respond of displacement and strain appears with the increase of the load. The average shear failure load reaches 205.68 kN with the shear failure occurring on the face sheet, and the maximum shear strain monitored on the composite plate is up to 16,115 µÎµ. A combination of theoretical analysis and finite element method (FEM) was conducted to predict the shear field distribution and the overall buckling load. The out-of-plane displacement field distribution and in-plane shear strain field distribution under the pure shear loading were revealed. The theoretical analysis method was deduced to obtain the variation rule of the shear buckling load. A good agreement was achieved among the experiment, theoretical analysis, and FEM results. It can be concluded that the theoretical analysis method is relatively conservative, and the FEM is more accurate in case of deformation and strain. The results predicted by h element and p element methods are very close. The results of the study could provide data support for the comprehensive promotion of the design and application of honeycomb sandwich composites.


Assuntos
Materiais Biocompatíveis/química , Modelos Teóricos , Nanocompostos/química , Estresse Mecânico , Resistência à Tração , Elasticidade , Análise de Elementos Finitos
16.
Sensors (Basel) ; 18(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702589

RESUMO

Large size high resolution (HR) satellite image matching is a challenging task due to local distortion, repetitive structures, intensity changes and low efficiency. In this paper, a novel matching approach is proposed for the large size HR satellite image registration, which is based on coarse-to-fine strategy and geometric scale-invariant feature transform (SIFT). In the coarse matching step, a robust matching method scale restrict (SR) SIFT is implemented at low resolution level. The matching results provide geometric constraints which are then used to guide block division and geometric SIFT in the fine matching step. The block matching method can overcome the memory problem. In geometric SIFT, with area constraints, it is beneficial for validating the candidate matches and decreasing searching complexity. To further improve the matching efficiency, the proposed matching method is parallelized using OpenMP. Finally, the sensing image is rectified to the coordinate of reference image via Triangulated Irregular Network (TIN) transformation. Experiments are designed to test the performance of the proposed matching method. The experimental results show that the proposed method can decrease the matching time and increase the number of matching points while maintaining high registration accuracy.

17.
Sensors (Basel) ; 18(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217059

RESUMO

A design method of large-sized square-loop and circular-loop frequency selective surface (FSS) filters for protection of mm-wave imagining receivers is presented. Due to fine cell structure requirements, the performance of the FSS structures at mm-wave frequencies can be significantly affected by fabrication tolerances, especially involved with large-size panel fabrication. Through a comprehensive parametric variation study on the performance of square-loop and circular-loop FSS structures, it is found that the circular-loop FSS structure performs much less sensitively to the fabrication tolerances, thereby producing better and consistent performances with given design values. As a design example, square-loop and circular-loop notch filters resonating at 105 GHz were designed and the performances were evaluated with multiple prototypes. The resonant frequencies of the implemented circular-loop FSS filters deviated by only about 0.5 GHz from the accurate designed value, which can be easily adjusted in the design process. The implemented square-loop and circular loop FSS filters provided low-loss in the pass-band and high rejection of 23 dB at the resonant frequency with good oblique angle performance.

18.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29125682

RESUMO

TiO2 nanosheets have continuously been intriguing due to their high surface activities as photocatalyst but still challenging to synthesis large-scale 2D nanostructures. A special microstructure evolution of TiO2 , ripening in aqueous solution at low temperature (≈4 °C), is found for the first time, i.e., from the initial aperiodic atom-networks gradually into low crystallized continuous spongy structure with small crystal facets and ultimately forming large-size anatase nanosheets with exposed (101) and (200) facets. Based on this finding, the synthesized anatase TiO2 nanosheets possess monodispersed large-scale 2D nanostructure so as to exhibit appreciable quantum size effects and remarkable enhanced optical absorption capacity. Using photocatalytic reduction of Cr (VI) to Cr (III) as the probe reaction to evaluate photocatalytic activities of the TiO2 nanosheets, the reductivity of Cr (VI) achieves 99.8% in 15 min under irradiation of 200-800 nm light. At the same time, an in situ Cr (III)-doping occurs spontaneously and triggers pronounced visible light driven photocatalysis, reducing 99% of Cr (VI) in 100 min under irradiation of 400-800 nm light.

19.
Transgenic Res ; 26(2): 309-318, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27943082

RESUMO

Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed "nuclear injection". To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.


Assuntos
Animais Geneticamente Modificados/genética , Núcleo Celular/genética , Transgenes/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Clonagem de Organismos/métodos , DNA/genética , Transferência Embrionária/métodos , Proteínas de Fluorescência Verde/genética , Técnicas de Transferência Nuclear , Suínos , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
20.
Knee Surg Sports Traumatol Arthrosc ; 25(7): 2129-2137, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26850514

RESUMO

PURPOSE: While a conventional single- or double-row repair technique could be applied for repair of C-shaped tears, a different surgical strategy should be considered for repair of U- or L-shaped tears because they typically have complex patterns with anterior, posterior, or both mobile leaves. This study was performed to examine the outcomes of the modified Mason-Allen technique for footprint restoration in the treatment of large U- or L-shaped rotator cuff tears. METHODS: Thirty-two patients who underwent an arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears between January 2012 and December 2013 were included in this study. Margin convergence was first performed to reduce the tear gap and tension, and then, an arthroscopic Mason-Allen technique was performed to restore the rotator cuff footprint in a side-to-end repair fashion. All patients were evaluated preoperatively and for a minimum of 2 years of follow-up with a visual analog scale (VAS) for pain, Constant score, and ultrasonography. RESULTS: There was significant improvement in all VAS and Constant scores compared with the preoperative values (P < 0.001). Functional results by Constant scores included 9 cases that were classified as excellent, 11 cases as good, 8 cases as fair, and 2 cases as poor. Binary logistic regression analysis revealed that heavy work, pseudoparalysis, joint space narrowing, fatty degeneration of the SST and IST, and a positive tangent sign were found to significantly correlate with functional outcomes. Multivariable logistic regression analysis revealed that only fatty degeneration of the SST was a risk factor for fair/poor clinical outcomes. Complications occurred in 5 of the 32 patients (15.6 %), and the reoperation rate due to complications was 6.3 % (2 of 32 patients). CONCLUSIONS: An arthroscopic modified Mason-Allen technique was sufficient to restore the footprint of the rotator cuff in our data. Overall satisfactory results were achieved in most patients, with the exception of those with severe fatty degeneration. An arthroscopic modified Mason-Allen technique could be an effective and reliable alternative for patients with large U- or L-shaped rotator cuff tears. LEVEL OF EVIDENCE: Case Series, Therapeutic Level IV.


Assuntos
Artroscopia/métodos , Lesões do Manguito Rotador/cirurgia , Técnicas de Sutura , Idoso , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Dor Pós-Operatória , Lesões do Manguito Rotador/patologia , Resultado do Tratamento , Escala Visual Analógica , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa