Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mar Drugs ; 19(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921326

RESUMO

Investigation of the Red Sea sponge Negombata magnifica gave two novel alkaloids, magnificines A and B (1 and 2) and a new ß-ionone derivative, (±)-negombaionone (3), together with the known latrunculin B (4) and 16-epi-latrunculin B (5). The analysis of the NMR and HRESIMS spectra supported the planar structures and the relative configurations of the compounds. The absolute configurations of magnificines A and B were determined by the analysis of the predicted and experimental ECD spectra. Magnificines A and B possess a previously unreported tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione backbone and represent the first natural compounds in this class. (±)-Negombaionone is the first ß-ionone of a sponge origin. Compounds 1-3 displayed selective activity against Escherichia coli in a disk diffusion assay with inhibition zones up to 22 mm at a concentration of 50 µg/disc and with MIC values down to 8.0 µM. Latrunculin B and 16-epi-latrunculin B inhibited the growth of HeLa cells with IC50 values down to 1.4 µM.


Assuntos
Alcaloides/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Poríferos/metabolismo , Alcaloides/isolamento & purificação , Animais , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/crescimento & desenvolvimento , Feminino , Células HeLa , Humanos , Oceano Índico , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
2.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576008

RESUMO

GBM is a high-grade cancer that originates from glial cells and has a poor prognosis. Although a combination of surgery, radiotherapy, and chemotherapy is prescribed to patients, GBM is highly resistant to therapies, and surviving cells show increased aggressiveness. In this study, we investigated the molecular mechanism underlying GBM progression after radiotherapy by establishing a GBM orthotopic xenograft mouse model. Based on transcriptomic analysis, we found that the expression of BEX1 and BEX4 was upregulated in GBM cells surviving radiotherapy. We also found that upregulated expression of BEX1 and BEX4 was involved in the formation of the filamentous cytoskeleton and altered mechanotransduction, which resulted in the activation of the YAP/TAZ signaling pathway. BEX1- and BEX4-mediated YAP/TAZ activation enhanced the tumor formation, growth, and radioresistance of GBM cells. Additionally, latrunculin B inhibited GBM progression after radiotherapy by suppressing actin polymerization in an orthotopic xenograft mouse model. Taken together, we suggest the involvement of cytoskeleton formation in radiation-induced GBM progression and latrunculin B as a GBM radiosensitizer.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas Oncogênicas/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
3.
New Phytol ; 227(6): 1605-1609, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32259281

RESUMO

The actin cytoskeleton is widely involved in plant immune responses. The majority of studies show that chemical disruption of the actin cytoskeleton increases plant susceptibility to pathogen infection. Similarly, several pathogens have adopted this as a virulence strategy and produce effectors that affect cytoskeleton integrity. Such effectors either exhibit actin-depolymerizing activity themselves or prevent actin polymerization. Is it thus possible for plants to recognize the actin's status and launch a counterattack? Recently we showed that chemical depolymerization of actin filaments can trigger resistance to further infection via the specific activation of salicylic acid (SA) signalling. This is accompanied by several defence-related, but SA-independent, effects (e.g. callose deposition, gene expression), relying on vesicular trafficking and phospholipid metabolism. These data suggest that the role of actin in plant-pathogen interactions is more complex than previously believed. It raises the question of whether plants have evolved a mechanism of sensing pathological actin disruption that eventually triggers defence responses. If so, what is the molecular basis of it? Otherwise, why does actin depolymerization specifically influence SA content but not any other phytohormone? Here we propose an updated model of actin's role in plant-microbe interactions and suggest some future directions of research to be conducted in this area.


Assuntos
Actinas , Ácido Salicílico , Citoesqueleto de Actina , Doenças das Plantas , Reguladores de Crescimento de Plantas , Plantas
4.
Exp Eye Res ; 170: 101-107, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421383

RESUMO

The transformation of keratocytes and fibroblasts to myofibroblasts is important to corneal wound healing as well as formation of stromal haze. The purpose of this study was to determine the effect of latrunculin B, an actin cytoskeleton disruptor in conjunction with a fundamental biophysical cue, substrate stiffness, on myofibroblast transformation in vitro and in vivo. Rabbit corneal fibroblasts were cultured on substrates of differing compliance (1.5, 22, and 71 kPa) and tissue culture plastic (TCP; > 1 GPa) in media containing 0 or 10 ng/ml TGFß1 for 72 h. Cells were treated with 0.4 µM Lat-B or DMSO for 30 min every 24 h for 72 h. RNA was collected from cells and expression of alpha-smooth muscle actin (α-SMA), keratocan, and ALDH1A1 determined using qPCR; immunocytochemistry was used to assess α-SMA protein expression. A rabbit phototherapeutic keratectomy (PTK) model was used to assess the impact of 0.1% Lat-B (n = 3) or 25% DMSO (vehicle control, n = 3) on corneal wound healing by assessment of epithelial wound size with fluorescein stain and semi-quantitative stromal haze scoring by an observer masked to treatment group as well as Fourier-domain optical coherence tomography (FD-OCT) at set time points. Statistical analysis was completed using one-way or two-way analysis of variance. Treatment with Lat-B versus DMSO resulted in significantly less αSMA mRNA (P ≤ 0.007) for RCF cells grown on 22 and 71 kPa substrates as well as TCP without or with TGFß1, and significantly decreased α-SMA protein expression in RCFs cultured on the intermediate (22 kPa) stiffness in the absence (P = 0.028) or presence (P = 0.018) of TGFß1. Treatment with Lat-B versus DMSO but did not significantly alter expression of keratocan or ALDH1A1 mRNA in RCFs (P > 0.05) in the absence or presence of TGFß1, but RCFs grown on stiff hydrogels (71 kPa) had significantly more keratocan mRNA expression versus the 22 kPa hydrogel or TCP (P < 0.001) without TGFß1. Administration of topical Lat-B BID was well tolerated by rabbits post-PTK but did not significantly alter epithelial wound closure, stromal haze score, stromal haze thickness as measured by FD-OCT in comparison to DMSO-treated rabbits. When corneal stromal cells are cultured on substrates possessing biologically relevant substratum stiffnesses, Lat-B modulates mRNA and protein expression of α-SMA and thus modulates myofibroblast transformation. At a dose and dose-frequency that reduced IOP in human glaucoma patients, Lat-B treatment did not substantially impact corneal epithelial or stromal wound healing in a rabbit PTK model. While a significant impact on wound healing was observed at the concentration and dose frequency reported here was not found, encouraging in vitro data support further investigations of topically applied Lat-B to determine if this compound can reduce stromal fibrosis.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Ceratócitos da Córnea/fisiologia , Elasticidade/fisiologia , Miofibroblastos/fisiologia , Tiazolidinas/farmacologia , Actinas/genética , Actinas/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Animais , Western Blotting , Células Cultivadas , Córnea/fisiologia , Córnea/cirurgia , Feminino , Imuno-Histoquímica , Microscopia de Fluorescência , Ceratectomia Fotorrefrativa , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Tomografia de Coerência Óptica , Fator de Crescimento Transformador beta1/farmacologia
5.
Clin Sci (Lond) ; 130(9): 721-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26839418

RESUMO

AF (atrial fibrillation) is the most common sustained arrhythmia, and the PVs (pulmonary veins) play a critical role in triggering AF. Stretch causes structural remodelling, including cytoskeleton rearrangement, which may play a role in the genesis of AF. Lat-B (latrunculin B), an inhibitor of actin polymerization, is involved in Ca(2+) regulation. However, it is unclear whether Lat-B directly modulates the electrophysiological characteristics and Ca(2+) homoeostasis of the PVs. Conventional microelectrodes, whole-cell patch-clamp, and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca(2+) within isolated rabbit PV preparations, or within isolated single PV cardiomyocytes, before and after administration of Lat-B (100 nM). Langendorff-perfused rabbit hearts were exposed to acute and continuous atrial stretch, and we studied PV electrical activity. Lat-B (100 nM) decreased the spontaneous electrical activity by 16±4% in PV preparations. Lat-B (100 nM) decreased the late Na(+) current, L-type Ca(2+) current, Na(+)/Ca(2+) exchanger current, and stretch-activated BKCa current, but did not affect the Na(+) current in PV cardiomyocytes. Lat-B reduced the transient outward K(+) current and ultra-rapid delayed rectifier K(+) current, but increased the delayed rectifier K(+) current in isolated PV cardiomyocytes. In addition, Lat-B (100 nM) decreased intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content in PV cardiomyocytes. Moreover, Lat-B attenuated stretch-induced increased spontaneous electrical activity and trigger activity. The effects of Lat-B on the PV spontaneous electrical activity were attenuated in the presence of Y-27632 [10 µM, a ROCK (Rho-associated kinase) inhibitor] and cytochalasin D (10 µM, an actin polymerization inhibitor). In conclusion, Lat-B regulates PV electrophysiological characteristics and attenuates stretch-induced arrhythmogenesis.


Assuntos
Arritmias Cardíacas/fisiopatologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Veias Pulmonares/patologia , Tiazolidinas/farmacologia , Amidas/farmacologia , Animais , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/complicações , Fibrilação Atrial/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Citocalasina D/farmacologia , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Técnicas In Vitro , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Perfusão , Piridinas/farmacologia , Coelhos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo
6.
Exp Cell Res ; 328(1): 164-171, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24992043

RESUMO

The cytoskeleton of human trabecular meshwork (HTM) cells is known to be altered in glaucoma and has been hypothesized to reduce outflow facility through contracting the HTM tissue. Latrunculin B (Lat-B) and Rho-associated protein kinase (ROCK) inhibitors disrupt the actin cytoskeleton and are in clinical trials as glaucoma therapeutics. We have previously reported a transient increase in HTM cell stiffness peaking at 90 min after Lat-B treatment with a return to pretreatment values after 270 min. We hypothesize that changes in actin morphology correlate with alterations in cell stiffness induced by Lat-B but this is not a general consequence of other cytoskeletal disrupting agents such as Rho kinase inhibitors. We treated HTM cells with 2 µM Lat-B or 100 µM Y-27632 and allowed the cells to recover for 30-270 min. While examining actin morphology in Lat-B treated cells, we observed striking cortical actin arrays (CAAs). The percentage of CAA positive cells (CPCs) was time dependent and exceeded 30% at 90 min and decreased after 270 min. Y-27632 treated cells exhibited few CAAs and no changes in cell stiffness. Together, these data suggest that the increase in cell stiffness after Lat-B treatment is correlated with CAAs.


Assuntos
Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Tiazolidinas/farmacologia , Malha Trabecular/citologia , Amidas/farmacologia , Anti-Hipertensivos/farmacologia , Fenômenos Fisiológicos Celulares , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Piridinas/farmacologia , Malha Trabecular/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
7.
Biochim Biophys Acta ; 1833(10): 2176-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665048

RESUMO

The role of caveolin-2 (cav-2), independently of caveolin-1 (cav-1) and caveolae, has remained elusive. Our data show that cav-2 exists in the plasma membrane (PM) in cells lacking cav-1 and forms homo-oligomeric complexes. Cav-2 did not interact with cavin-1 and cavin-2 in the PM. Rab6-GTP was required for the microtubule-dependent exocytic transport of cav-2 from the Golgi to the PM independently of cav-1. The cav-2-oligomerized noncaveolar microdomain was unaffected by cholesterol depletion and protected from shearing of silica-coated PM. Activation of insulin receptor (IR) was processed in the microdomain. Actin depolymerization affected the formation and sustenance of cav-2-oligomerized noncaveolar microdomain and attenuated IR recruitment to the microdomain thereby inhibiting IR signaling activation. Cav-2 shRNA stable cells and the cells ectopically expressing an oligomerization domain truncation mutant, cav-2∆47-86 exhibited retardation of IR signaling activation via the noncaveolar microdomain. Elevation in status of cav-2 expression rendered the noncaveolar activation of IR signaling in cav-1 down-regulated or/and cholesterol-depleted cells. Our findings reveal a novel homo-oligomeric cav-2 microdomain responsible for regulating activation of IR signaling in the PM.


Assuntos
Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Transporte Biológico , Western Blotting , Cavéolas/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Células Cultivadas , Fibroblastos/citologia , Guanosina Trifosfato/metabolismo , Imunoprecipitação , Insulina/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Frações Subcelulares
8.
Artigo em Inglês | MEDLINE | ID: mdl-37929805

RESUMO

Actin remodeling is a critical regulator of mast cell secretion. In previous work, we have shown that dehydroleucodine and xanthatin, two natural α,ß-unsaturated lactones, exhibit anti-inflammatory and mast cell stabilizing properties. Based on this background, this study aimed to determine whether the mast cell stabilizing action of these lactones is associated with changes in the actin cytoskeleton. Rat peritoneal mast cells were preincubated in the presence of dehydroleucodine or xanthatin before incubation with compound 48/80. Comparative studies with sodium cromoglycate and latrunculin B were also made. After treatments, different assays were performed on mast cell samples: ß-hexosaminidase release, cell viability studies, quantification of mast cells and their state of degranulation by light microscopy, transmission electron microscopy, and actin staining for microscopy observation. Results showed that dehydroleucodine and xanthatin inhibited mast cell degranulation, evidenced by the inhibition of ß-hexosaminidase release and decreased degranulated mast cell percentage. At the same time, both lactones altered the F-actin cytoskeleton in mast cells resulting, similarly to Latrunculin B, in a higher concentration of nuclear F-actin when activated by compound 48/80. For the first time, this study describes the biological properties of dehydroleucodine and xanthatin concerning to the rearrangement of actin filaments during stimulated exocytosis in mast cells. These data have important implications for developing new anti-inflammatory and mast cell stabilizing drugs and for designing new small molecules that may interact with the actin cytoskeleton.

9.
Plant Signal Behav ; 16(4): 1876348, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33576719

RESUMO

Gravitropism plays a critical role in the growth and development of plants. Previous reports proposed that the disruption of the actin cytoskeleton resulted in enhanced gravitropism; however, the mechanism underlying these phenomena is still unclear. In the present study, real-time observation on the effect of Latrunculin B (Lat B), a depolymerizing agent of microfilament cytoskeleton, on gravitropism of the primary root of Arabidopsis was undertaken using a vertical stage microscope. The results indicated that Lat B treatment prevented the growth of root, and the growth rates of upper and lower flanks of the horizontally placed root were asymmetrically inhibited. The growth of the lower flank was influenced by Lat B more seriously, resulting in an increased differential growth rate between the upper and lower flanks of the root. Further analysis indicated that Lat B affected cell growth mainly in the transition and elongation zones. Briefly, the current data revealed that Lat B treatment inhibited cell elongation, especially the cells in the lower flanks of the transition and elongation zones, which finally manifested as the facilitation of gravitropic curvature of the primary root.


Assuntos
Arabidopsis/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Gravitropismo/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Tiazolidinas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
10.
Virology ; 553: 9-22, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197754

RESUMO

During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.


Assuntos
Caulimovirus/fisiologia , Corpos de Inclusão Viral/fisiologia , Transativadores/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Corpos Enovelados/metabolismo , Diacetil/análogos & derivados , Diacetil/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Corpos de Inclusão Viral/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Mutação , Folhas de Planta/virologia , Domínios Proteicos , Nicotiana/virologia , Transativadores/química , Transativadores/genética
11.
Plants (Basel) ; 9(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235617

RESUMO

Plasmolysis is usually introduced to cell biology students as a tool to illustrate the plasma membrane: hypertonic solutions cause the living protoplast to shrink by osmotic water loss; hence, it detaches from the surrounding cell wall. What happens, however, with the subcellular structures in the cell cortex during this process of turgor loss? Here, we investigated the cortical endoplasmic reticulum (ER) in moss protonema cells of Physcomitrella patens in a cell line carrying a transgenic ER marker (GFP-HDEL). The plasma membrane was labelled simultaneously with the fluorescent dye FM4-64 to achieve structural separation. By placing the protonemata in a hypertonic mannitol solution (0.8 M), we were able to follow the behaviour of the cortical ER and the protoplast during plasmolysis by confocal laser scanning microscopy (CLSM). The protoplast shape and structural changes of the ER were further examined after depolymerisation of actin microfilaments with latrunculin B (1 µM). In its natural state, the cortical ER is a dynamic network of fine tubes and cisternae underneath the plasma membrane. Under acute and long-term plasmolysis (up to 45 min), changes in the protoplast form and the cortical ER, as well as the formation of Hechtian strands and Hechtian reticula, were observed. The processing of the high-resolution z-scans allowed the creation of 3D models and gave detailed insight into the ER of living protonema cells before, during and after plasmolysis.

12.
J Physiol Sci ; 69(3): 513-521, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900190

RESUMO

Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP2 depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.


Assuntos
Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Shab/metabolismo , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Tiazolidinas/farmacologia
13.
Plant Biol (Stuttg) ; 21(2): 352-360, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30472775

RESUMO

This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.


Assuntos
Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Rodófitas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Parede Celular/metabolismo , Cloroplastos/metabolismo , Cromonas/farmacologia , Citocalasinas , Diacetil/análogos & derivados , Diacetil/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Estruturas Vegetais/crescimento & desenvolvimento , Estruturas Vegetais/metabolismo , Rodófitas/efeitos dos fármacos , Rodófitas/crescimento & desenvolvimento , Tiazolidinas/farmacologia
14.
Cell Chem Biol ; 24(7): 907-916.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28732201

RESUMO

To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Androstadienos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Endossomos/metabolismo , Tiazolidinas/farmacologia , Aminopiridinas/farmacologia , Antígeno CD11b/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Wortmanina , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
J Proteomics ; 153: 89-99, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-27321584

RESUMO

Actin cytoskeleton is a vital cellular structure primarily known for controlling cell integrity, division and expansion. Here we present a proteomic dissection of Arabidopsis roots treated by actin depolymerizing agent latrunculin B. Pharmacological disintegration of the actin cytoskeleton by latrunculin B caused downregulation of several proteins involved in the actin organization and dynamics. Moreover, this approach helped to identify new protein candidates involved in gene transcription, due to the altered abundance of proteins involved in mRNA nuclear export. Finally, latrunculin B negatively affected the abundance of abscisic acid (ABA) responsive proteins. SIGNIFICANCE: This article substantially contributes to the current knowledge about the importance of actin organization and dynamics in proteome remodelling. We employed gel based and gel free proteomic analyses and identified several new protein candidates and protein networks linking actin dynamics to the gene transcription and to the ABA response in Arabidopsis.


Assuntos
Actinas/química , Arabidopsis/química , Raízes de Plantas/química , Proteoma/efeitos dos fármacos , Ácido Abscísico/fisiologia , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Polimerização/efeitos dos fármacos , Proteoma/análise , Proteômica/métodos , Tiazolidinas/farmacologia
16.
J Plant Physiol ; 193: 22-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26930570

RESUMO

Drought is one of the stresses that limit the yield of barley. Despite extensive studies focused on the issue, the molecular mechanism of the response to drought is still not fully understood. In our previous study, we proposed drought-induced signal perception controlled by actin filaments (AFs). To test this hypothesis, we used a chemical inhibitor of AF polarization-latrunculin B. In drought-treated barley leaves, latrunculin B induced AF depolymerization and altered gene expression (mainly those controlling AF formation), notably inhibiting the expression of HVA1, a dehydrin encoding gene whose function in drought tolerance has been widely studied. These results suggest that AFs might be involved in water-deficit signal perception in plant cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Proteínas de Plantas/metabolismo , Tiazolidinas/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hordeum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais
17.
Eur J Pharmacol ; 789: 265-274, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474470

RESUMO

The anticancer drugs camptothecin (CPT) and topotecan (TPT) are known DNA topoisomerase I inhibitors which cause DNA damage and lead to cell death. In this study we provide evidence that CPT and TPT also interfere with the elements of cytoskeleton - microtubules and actin filaments which could be partly responsible for their cytotoxic properties. CPT and TPT apparently affected microtubule structures in living cells (Hela and U2OS) and inhibited tubulin polymerization in vitro with IC50 values of 74.57±9.96µM and 121.55±58.68µM, respectively. TPT significantly affected the nucleation and growth phase during the microtubule assembly in vitro, whereas the mode of action of CPT was different in that it specifically affected the 'tread milling' of polymerized microtubules. Cell cycle effects of CPT and TPT varied with their concentrations. CPT and TPT induced G2/M arrest and promoted the population to 76.94±11.20% and 83.91±2.43% at a concentration of 9.4nM and 46.9nM, respectively. As the concentration increased, cells were blocked in S phase with a dose-dependent reduction in G2/M population. In addition, CPT and TPT exhibited a certain effect on actin filaments by reducing the mass of actin filaments. The interactions of CPT and TPT with microtubules and actin filaments present new insights into their modes of action.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Citoesqueleto/efeitos dos fármacos , Topotecan/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Tubulina (Proteína)/química
18.
MAbs ; 7(1): 199-211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25484043

RESUMO

Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 µg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 µg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Linfoma de Burkitt/imunologia , Caspases/imunologia , Capeamento Imunológico/efeitos dos fármacos , Proteínas de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Apoptose/imunologia , Linfoma de Burkitt/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Microdomínios da Membrana/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
19.
Plant Pathol J ; 29(1): 17-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25288925

RESUMO

Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3.

20.
Oncol Lett ; 6(5): 1383-1389, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24179529

RESUMO

The actin cytoskeleton is important in the maintenance of cellular homeostasis and in signal transduction pathways leading to cell growth and apoptotic cell death in eukaryotic cells. Disruption of actin dynamics is associated with morphological changes in cancer cells. Deletion of phosphatase and tensin homolog (PTEN), a tumor suppressor gene involved in the regulation of the cell cycle and apoptosis, leads to cytoskeleton disruption and double-strand breaks (DSBs). To study the mechanism(s) of actin disruption-mediated apoptosis and its potential application for anticancer therapy, PTEN-null PC3M prostate cancer cells were treated with latrunculin B (LB). LB induced destabilization of the actin microfilament and apoptosis in a dose-dependent manner, as demonstrated by morphological changes and nuclear condensation in the PC3M cells. In addition, it resulted in an increase in the levels of γH2AX recruitment, implicating the induction of DNA damage, including DSBs. Induction of Bax, with little effect on Bcl-2 expression, indicated that actin disruption causes apoptosis through activation of Bax signaling in PC3M cells. Treatment with U20126, a mitogen-activated protein kinase kinase (MEK) inhibitor, resulted in attenuated induction of DSBs and apoptosis through activation of protein kinase B (Akt), suggesting that LB-mediated actin dysfunction induces DSBs via the MEK/extracellular signal-regulated kinase (Erk) pathway in cells. Therefore, counteracting activation of phosphorylated Akt stemming from the inhibition of MEK/Erk resulted in attenuation of actin disruption-induced apoptotic events in the PC3M cells. The results of this study provide information not only for use in delineation of the molecular association between actin disruption and tumorigenesis, but also for the development of a strategy for actin-based anticancer chemotherapy against highly metastatic prostate cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa