Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Ann Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980751

RESUMO

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

2.
J Sci Food Agric ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030951

RESUMO

BACKGROUND: The first step in the contamination of leafy vegetables by human pathogens is their attachment to the leaf surface. The success of this is influenced strongly by the physical and chemical characteristics of the surface itself (number and size of stomata, presence of trichomes and veins, epicuticular waxes, hydrophobicity, etc.). This study evaluated the attachment of Salmonella enterica to 30 baby-leaf salads and tested whether the differences found among them were related to the following leaf traits: hydrophobicity, roughness, and epicuticular waxes. RESULTS: Differences in susceptibility to contamination by S. enterica were found between the 30 baby-leaf salads investigated. The lowest attachment was found in wild lettuce (Lactuca serriola L.) and lamb's lettuce 'Trophy F1' (Valerianella locusta [L.] Laterr.), with values of 1.63 ± 0.39 Log(CFU/cm2) and 1.79 ± 0.54 Log(CFU/cm2), respectively. Attachment was correlated with hydrophobicity (measured as contact angle) (r = -0.39) and epicuticular waxes (r = -0.81) but not with roughness (r = 0.24). The most important wax components for attachment were alcohols and, in particular, the three-dimensional (3D) wax crystals of C26 alcohol, but fatty acids probably also had a role. Both these compounds increased hydrophobicity. The presence of thymol, whose antimicrobial properties are well known, was found in lamb's lettuce. CONCLUSIONS: The findings of this study can help to predict and control the attachment and contamination of leafy salads by enterobacteria. They also provide useful information for breeding programs aiming to develop cultivars that are less susceptible to human pathogens, enhancing the food safety of vegetables. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
J Exp Bot ; 74(17): 5255-5272, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249250

RESUMO

Pistia stratiotes is an aquatic plant with a complex structure that allows it to stay afloat. It grows quickly, and in large numbers becomes an undesirable plant as an invasive species. Describing the dynamics of a water drop splash on P. stratiotes leaves can contribute to increasing knowledge of its behavior and finding alternative methods for eradicating it or using it for the benefit of the environment. The non-wettable surface of P. stratiotes presents a complex structure-simple uniseriate trichomes and also ridges and veins. We analyzed the drop impact on a leaf placed on the water surface and recorded it by high-speed cameras. Based on the recordings, quantitative and qualitative analyses were performed. After impacting the leaf, the water drop spread until it reached its maximum surface area accompanied by the ejection of early droplets in the initial stage. Thereafter, three scenarios of water behavior were observed: (i) drop receding and stabilization; (ii) drop receding and ejection of late droplets formed in the later stage as an effect of elastic deformation of the leaf; and (iii) drop breaking apart and ejection of late droplets. The results indicated that the increasing kinetic energy of the impacting drops expressed by the Weber number and the complex leaf surface have an effect on the course of the splash. The simple uniseriate trichomes of the P. stratiotes leaf and the high energy of the falling drops were responsible for the formation and characteristics of the early droplets. The presence of ridges and veins and the leaf's mechanical response had an impact on the occurrence of late droplets.


Assuntos
Araceae , Interações Hidrofóbicas e Hidrofílicas , Plantas , Folhas de Planta/fisiologia , Água/análise
4.
Ann Bot ; 131(2): 287-300, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36420705

RESUMO

BACKGROUND AND AIMS: Foliar water uptake (FWU) has been documented in many species and is increasingly recognized as a non-trivial factor in plant-water relationships. However, it remains unknown whether FWU is a widespread phenomenon in Pinus species, and how it may relate to needle traits such as the form and structure of stomatal wax plugs. In this contribution, these questions were addressed by studying FWU in current-year and 1-year-old needles of seven Pinus species. METHODS: We monitored FWU gravimetrically and analysed the needle surface via cryo-scanning electron microscopy. Additionally, we considered the effect of artificial wax erosion by application of the surfactant Triton X-100, which is able to alter wax crystals. KEY RESULTS: The results show for all species that (1) FWU occurred, (2) FWU is higher in old needles compared to young needles and (3) there is substantial erosion of stomatal wax plugs in old needles. FWU was highest in Pinus canariensis, which has a thin stomatal wax plug. Surfactant treatment enhanced FWU. CONCLUSIONS: The results of this study provide evidence for (1) widespread FWU in Pinus, (2) the influence of stomatal wax plugs on FWU and (3) age-related needle surface erosion.


Assuntos
Pinus , Tensoativos , Transporte Biológico , Microscopia Eletrônica de Varredura , Água
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069235

RESUMO

Significant efforts have been made to optimise spectrum quality in indoor farming to maximise artificial light utilisation and reduce water loss. For such an improvement, green (G) light supplementation to a red-blue (RB) background was successfully employed in our previous studies to restrict both non-photochemical quenching (NPQ) and stomatal conductance (gs). At the same time, however, the downregulation of NPQ and gs had the opposite influence on leaf temperature (Tleaf). Thus, to determine which factor plays the most prominent role in Tleaf regulation and whether such a response is temporal or permanent, we investigated the correlation between NPQ and gs and, subsequently, Tleaf. To this end, we analysed tomato plants (Solanum lycopersicum L. cv. Malinowy Ozarowski) grown solely under monochromatic LED lamps (435, 520, or 662 nm; 80 µmol m-2 s-1) or a mixed RGB spectrum (1:1:1; 180 µmol m-2 s-1) and simultaneously measured gs and Tleaf with an infrared gas analyser and a thermocouple or an infrared thermal camera (FLIR) during thermal imaging analyses. The results showed that growth light quality significantly modifies Tleaf and that such a response is not temporal. Furthermore, we found that the actual adaxial leaf surface temperature of plants is more closely related to NPQ amplitude, while the temperature of the abaxial surface corresponds to gs.


Assuntos
Fotossíntese , Solanum lycopersicum , Fotossíntese/fisiologia , Temperatura , Luz , Folhas de Planta/fisiologia , Clorofila
6.
Food Microbiol ; 108: 104113, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088120

RESUMO

Plants influence epiphytic bacterial associations but Salmonella enterica colonizes crop plants commensally, raising the possibility of human foodborne illness, but the factors that mediate human pathogen-plant associations remain understudied. We evaluated whether any changes in leaf tissue and surface metabolomes with kale (Brassica oleracea Acephala group) development and in response to drought modulated Salmonella leaf association. Untargeted phytochemical profiling (including primary and secondary metabolites) of kale leaf tissue extracts and leaf surface washes revealed distinct metabolite profiles that shifted with plant development. Metabolomes of juvenile plants also diverged in response to drought stress, an effect not noted in mature kale. Restricted watering in juvenile plants led to up-accumulation of 45 compounds in leaf tissue and 21 in leaf wash and the appearance of several unique peaks, with concomitant increases in phytochemical measurements. The antioxidant capacity and total flavonoid content were higher in mature than juvenile, regularly watered plant leaf extracts. Drought also elicited flavonoids and glucosinolates in juvenile plants. In mature plants, drought did not induce further prominent changes. Regularly watered juvenile kale provided a favorable substrate for inoculated Salmonella but the ability to support Salmonella declined with age and with drought stress. Salmonella growth was impaired in mature or water-stressed plant washes compared to controls and positive correlations were detected between Salmonella counts on leaves and in leaf washes. Moreover, Salmonella counts were inversely correlated with total flavonoids and phenolics in kale tissues from juvenile plants and regularly watered plants. Future studies should assess how changes in primary and secondary metabolites on the kale plant surface can modulate the Salmonella association. Regulated water restriction could be a strategy in controlled agriculture, with the dual purpose of enhancing health beneficial quality and food safety, especially when harvested at the baby kale stage.


Assuntos
Brassica , Salmonella enterica , Brassica/química , Secas , Flavonoides/análise , Flavonoides/metabolismo , Inocuidade dos Alimentos , Humanos , Metaboloma , Compostos Fitoquímicos , Salmonella enterica/metabolismo , Água/metabolismo
7.
Ecotoxicol Environ Saf ; 247: 114238, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323152

RESUMO

Precipitation is considered the most effective way to remove particulate matter from the leaves of plants. Changes in rainfall characteristics can affect the scavenging processes of particulate matter from leaves. In order to better understand the dynamics of PM scavenging during rainfall, especially the water-soluble ions components, leaves from the 11 plant species (trees, shrubs, terrestrial herbs, wetland plants) from the Olympic park were sampled and used in indoor experiments. During the experiments, the rainfall intensity was set at 30 mm/h, 45 mm/h, and 60 mm/h, and the duration was divided into 0-20 min, 20-40 min, and 40-60 min. The sampled plant leaves were set in the experiments at 1 m and 3 m height from the ground. Concentrations and compositions of nine water-soluble ions of rainfall samples were analyzed in this experiment. The results revealed that SO42-, Ca2+, and Na+ were the most abundant ionic species removed from the leaves, and NO3- ranked fourth, followed by Cl-, Mg2+ K+, NH4+, and F-. The ions concentration of rainfall samples decreased when the rain intensity increased from 30 to 45 mm/h and when the rain intensity increased to 60 mm/h. The efficiency of scavenging during different rainfall durations depends on the ionic species. Na+, Mg2+, Ca2+, and SO42- concentrations increased with the increase in rainfall duration, whereas those of NH4+, K+, and Cl- decreased. The effect of leaf height on ions concentration of rainfall samples was also different among the ionic species: Na+, Mg2+, Ca2+, NO3-, and F- concentrations were significantly higher at 1 m compared with 3 m. The principal component analysis of ions in rainfall samples revealed two main sources of particulate matter in our study. One is from vehicle exhaust and industrial and agricultural pollution. The other is agricultural combustion and ground dust sources. The results of the above study can provide a basis and theoretical support for the establishment of urban cleaning systems and the prevention of air pollution.


Assuntos
Folhas de Planta , Água , Íons , Árvores , Material Particulado
8.
Ecotoxicol Environ Saf ; 240: 113679, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640352

RESUMO

The leaf surfaces of plants are important organs for retaining particulate matter (PM). They can be renewed via washout processes (e.g., rainfall), thereby restoring the ability to retain new PM. Most of the current studies have focused on the mechanisms of rainfall characteristics on the renewal of PM on plant leaf surfaces and interspecific differences, while the effects of different leaf heights on PM renewal within the same plant canopy have been less studied. In addition, the dynamics of PM during rainfall, especially the water-soluble ions (WSII) component, are often neglected. This research used Salix matsudana, a tree species with a significant natural height difference between the upper and lower leaves of its canopy, as its study object. Using artificially simulated rainfall, the rainfall intensity was quantified as low, medium, and high (i.e., 30 mm/h, 45 mm/h, and 60 mm/h), and the rainfall process was divided into three sub-stages: pre (0-20 min), mid (20-40 min), and post (40-60 min). The experimental setup was divided into upper (2 m) and lower leaves (1 m) according to the height of the canopy. The concentration and distribution of water-insoluble PM (WIPM) were obtained using the elution weighing method, whereas WSII were obtained using ion chromatography. The dynamics of WIPM and WSII during the removal of PM from the leaf surface by rainfall were studied at different canopy heights, and the results showed that the composition and proportions of WIPM and WSII varied at different stages of the rainfall process and that the concentrations of WIPM and WSII removed from the upper leaves differed slightly from those of the lower leaves. In particular, the concentrations of WIPM and WSII removed from the lower leaves were greater than those from the upper leaves at high rainfall intensity (60 mm/h), showing consistency between rainfall removal of PM from the leaf surface at different heights within the plant canopy and deposition of PM, while at low (30 mm/h) and medium (45 mm/h) rainfall intensities the performance was slightly different.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Íons/análise , Material Particulado/análise , Folhas de Planta/química , Plantas , Árvores/química , Água/análise
9.
Int J Phytoremediation ; 24(11): 1213-1221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35040734

RESUMO

Green plants can effectively retain atmospheric particle pollution and purify the air. As an important part of the campus ecosystem, they have a significant effect on absorbing atmospheric pollutants and improving the quality of the campus air environment. Six common greening plants were selected as the object in Xiangnan University. The dust retention capacity of plant leaves, leaf micro-structure, and leaf contact angle were measured. The results show that the highest amounts of dust removed by Osmanthus fragrans Lour was 3.451 g/m2, and the least amounts of dust removed by Magnolia denudata Desr. was 1.005 g/m2, and the maximum is 4.148 times of the minimum. The micro-structure of the plant leaf surface affects the amount of dust retention. The plant dust retention capacity with gully of the leaf surface and fluff, stomata, and sawtooth structure is relatively strong; The plant dust retention capacity with smooth, wax layer, leathery, and gully is relatively weak. The leaf contact area of a plant is related to its dust retention ability, that is, when the measured leaf contact angle is <90°, the leaf dust retention ability of the plant is strong. When the blade contact angle is >90°, the dust retention capacity is weak.


Many studies have found that green plants can effectively retain atmospheric particle pollution and purify the air. As an important part of the campus ecosystem, few people specially study the campus ecosystem. Many scholars focus on the research on urban street trees and different districts of the city. The object of this study is more in-depth and targeted. Through the analysis of the difference of dust retention ability between common plants in campus, this paper compares and analyzes the influencing factors of the difference of dust retention ability among plants, which is not only related to the external environment but also closely related to the micro-structure characteristics of plant leaves. The research on the dust retention ability of different plants will help to better control dust and atmospheric environmental pollution, improve air quality, and select plants with strong dust retention ability as green plants on campus, which will play an important role in reducing dust pollution on campus.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Poeira/análise , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Folhas de Planta/química , Plantas , Árvores
10.
New Phytol ; 230(6): 2213-2225, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721337

RESUMO

Phosphorus (P) scarcity constrains plant growth in many ecosystems worldwide. In P-poor ecosystems, the biogeochemical paradigm links plant productivity with the deposition of P-rich dust originating from desert storms. However, dust P usually has low bioavailability and is thought to be utilized solely via roots. We applied desert dust on the leaf surface of P-deficient and P-sufficient wheat, chickpea and maize to test the feasibility of direct foliar uptake of dust-P and investigate its related acquisition mechanisms. Foliar dust doubled the growth of P-deficient chickpea and wheat, crops originating near the Syrian Desert. P deficiency stimulated several leaf modifications that enabled acquisition of up to 30% of the sparingly soluble dust-P that is conventionally perceived as unavailable. These modifications increased foliar dust capture, acidified the leaf surface and, in chickpea, enhanced exudation of P-solubilizing organic acids. Maize (originating far from deserts) displayed only a marginal response to dust. The dramatic response of chickpea and wheat in comparison to maize suggests that plants that evolved in dust-rich ecosystems adopted specialized utilization strategies. Interestingly, the abovementioned foliar responses are comparable to known P uptake root responses. Given that P limitation is almost universal, a foliar P uptake pathway will have significant ecological and agricultural implications.


Assuntos
Cicer , Fósforo , Poeira , Ecossistema , Folhas de Planta , Raízes de Plantas
11.
New Phytol ; 231(1): 122-136, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539544

RESUMO

Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2  = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.


Assuntos
Ecossistema , Água , Brasil , Desidratação , Florestas , Folhas de Planta , Estações do Ano , Árvores
12.
Plant Cell Environ ; 44(6): 1728-1740, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665817

RESUMO

Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.


Assuntos
Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Prunus dulcis/metabolismo , Pyrus/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Glicosídeos/farmacologia , Cinética , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura
13.
Arch Microbiol ; 203(1): 335-346, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32945890

RESUMO

To address correlations between population sizes of microbes on the leaf surfaces and leaf morphological and physicochemical properties, various leaf morphological and physicochemical features as possible predictors of microbial population sizes on the leaf surfaces of four Napier grass cultivars were assessed. Results indicated microbes except for lactic acid bacteria (LAB) preferred to colonize the leaf surfaces bearing trichomes, and their population sizes were significantly correlated with trichomes, especially for yeasts. The population sizes of microbes were positively correlated with soluble sugar content (p < 0.05). Furthermore, no significant correlation was found between population sizes of microbes and wax content, except for yeasts. The multivariate regression trees (MRT) analysis showed different genotypes of leaf-microbe system could be characterized by four-leaf attributes with soluble sugar of leaf tissues being the primary explanatory attribute. Leaves with soluble sugar content below 9.72 mg g-1 fresh weight (FW) were rarely colonized. For leaves with soluble sugar content above 9.72 mg g-1 FW, water content was the next explanatory leaf attribute, followed by wax content on the leaf surfaces. Leaves with higher water content (> 73%) were more colonized, and small microbial population was associated with higher wax content (> 10.66 mg g-1 dry matter). In conclusion, leaf chemical attributes have a higher contribution than morphological structure properties in determining population sizes of microbes on the leaf surfaces. The exuded soluble sugar and protein promote the development of microbial populations. For different genotypes of leaf-microbe system, the relationship between microbial abundance on their leaf surfaces and leaf morphological structure or physicochemical properties may be predicted by the MRT. Population sizes of microbes are primarily influenced by soluble sugar content under the water-rich conditions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cenchrus/genética , Cenchrus/microbiologia , Interações entre Hospedeiro e Microrganismos , Folhas de Planta/microbiologia , Leveduras/fisiologia , Genótipo , Folhas de Planta/química , Folhas de Planta/genética , Açúcares/análise , Açúcares/metabolismo
14.
Am J Bot ; 108(4): 718-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860931

RESUMO

PREMISE: Biological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed, Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2 and nitrogen pollution enhance its growth and facilitate invasion because P. australis responds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2 and nitrogen enrichment in P. australis by evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax ) and photosynthetic rates. METHODS: Plants were grown in situ in open-top chambers under ambient and elevated atmospheric CO2 (eCO2 ) and porewater nitrogen (Nenr ) in a Chesapeake Bay tidal marsh. We measured light-saturated carbon assimilation rates (Asat ) and stomatal characteristics, from which we calculated gwmax and determined whether CO2 and Nenr altered the relationship between gwmax and Asat . RESULTS: eCO2 and Nenr enhanced both gwmax and Asat , but to differing degrees; gwmax was more strongly influenced by Nenr through increases in stomatal density while Asat was more strongly stimulated by eCO2 . There was a positive relationship between gwmax and Asat that was not modified by eCO2 or Nenr , individually or in combination. CONCLUSIONS: Changes in stomatal features co-occur with previously described responses of P. australis to eCO2 and Nenr . Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage.


Assuntos
Dióxido de Carbono , Ecossistema , Nitrogênio , Fotossíntese , Folhas de Planta , Poaceae
15.
Environ Res ; 193: 110543, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253704

RESUMO

Nitrous acid (HONO) is of considerable interest because it is an important precursor of hydroxyl radicals (OH), a key species in atmospheric chemistry. HONO sources are still not well understood, and air quality models fail to predict OH as well as HONO mixing ratios. As there is little knowledge about the potential contribution of plant surfaces to HONO emission, this laboratory work investigated HONO formation by heterogeneous reaction of NO2 on Zea mays. Experiments were carried out in a flow tube reactor; HONO, NO2 and NO were measured online with a Long Path Absorption Photometer (LOPAP) and a NOx analyzer. Tests were performed on leaves under different conditions of relative humidity (5-58%), NO2 mixing ratio representing suburban to urban areas (10-80 ppbv), spectral irradiance (0-20 W m-2) and temperature (288-313 K). Additional tests on plant wax extracts from Zea mays leaves showed that this component can contribute to the observed HONO formation. Temperature and NO2 mixing ratios were the two environmental parameters that showed substantially increased HONO emissions from Zea mays leaves. The highest HONO emission rates on Zea mays leaves were observed at 313 K for 40 ppbv of NO2 and 40% RH and reached values of (5.6 ± 0.8) × 109 molecules cm-2 s-1. Assuming a mixing layer of 300 m, the HONO flux from Zea mays leaves was estimated to be 171 ± 23 pptv h-1 during summertime, which is comparable to what has been reported for soil surfaces.


Assuntos
Dióxido de Nitrogênio , Ácido Nitroso , Laboratórios , Folhas de Planta , Zea mays
16.
Int J Phytoremediation ; 22(10): 986-999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32037853

RESUMO

The present study aimed to explore the tolerance potential of Cd, Pb and Cu and physiological alterations in two common tree species growing in Minia governorate (Egypt) namely: Eucalyptus globulus and Ficus nitida and to investigate the leaf features [leaf area (LA) and specific leaf area (SLA)] associated with the phytoremediation process. The findings may be useful for future surveillance as preliminary reference values for levels of heavy metals in urban and industrial settings. The levels of cadmium, lead and Cupper in plant leaf were determined. The results showed that heavy metals could inhibit the growth of plants including LA and SLA. The water content (WC) and photosynthetic pigments of Eucalyptus and Ficus decreased with the increased concentration of metals. Contrary to chlorophylls (a) and (b), carotenoids and chlorophyll ratio (a/b) showed a significant increase with increasing metals concentration especially that of Cd and Cu. Proline content was relatively increased and soluble carbohydrate content decreased in plants with high metal accumulation. Eucalyptus showed better tolerance capacity for Cd, Pb and Cu when compared to Ficus. The ability of Eucalyptus to accumulate and tolerate metal stress makes this species a good candidate to recuperate heavy metals-contaminated conditions.


Assuntos
Poluição do Ar , Eucalyptus , Ficus , Metais Pesados/análise , Poluentes do Solo , Biodegradação Ambiental , Egito
17.
J Basic Microbiol ; 60(8): 730-734, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529642

RESUMO

Endophytes have been defined as microorganisms living inside plant tissues without causing negative effects on their hosts. Endophytic microbes have been extensively studied for their plant growth-promoting traits. However, analyses of endophytes require complete removal of epiphytic microorganisms. We found that the established tests to evaluate surface sterility, polymerase chain reaction, and leaf imprints, are unreliable. Therefore, we used scanning electron microscopy (SEM) as an additional assessment of epiphyte removal. We used a diverse suite of sterilization protocols to remove epiphytic microorganisms from the leaves of a gymnosperm and an angiosperm tree to test the influence of leaf morphology on the efficacy of these methods. Additionally, leaf tissue damage was also evaluated by SEM, as damaging the leaves might have an impact on endophytes and could lead to inaccurate assessment of endophytic communities. Our study indicates, that complete removal of the leaf cuticle by the sterilization technique assures loss of epiphytic microbes, and that leaves of different tree species may require different sterilization protocols. Furthermore, our study demonstrates the importance of choosing the appropriate sterilization protocol to prevent erroneous interpretation of host-endophyte interactions. Moreover, it shows the utility of SEM for evaluating the effectiveness of surface sterilization methods and their impact on leaf tissue integrity.


Assuntos
Folhas de Planta , Esterilização/métodos , Endófitos/isolamento & purificação , Endófitos/fisiologia , Microscopia Eletrônica de Varredura , Pinus/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Populus/microbiologia
18.
J Environ Manage ; 275: 111239, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846360

RESUMO

Today, particulate-matter (PM) pollution has become one of the most severe air-pollution problems. As the most commonly used method in daily life, phytoremediation can use plant organs (such as leaves) as biological filters for pollutants to repair the atmosphere. At the same time, rainfall can remove PM from plant-leaf surfaces and enable them to adsorb PM again. By simulating natural rainfall, the rainfall characteristics are quantified as rainfall intensity and rainfall duration, and we use the washout-weighing method to obtain the amount of PM removed from the leaf surface. Then, use a scanner to scan the leaves after rain to get their images, and use Image J software to process the images to obtain leaf area. Finally, the amount of PM removed by rain per unit leaf area can be calculated. It will be used to explore the impact of different rainfall intensity and duration on the removal of PM from the leaf surface of wetland plants. The results showed that under three rainfall intensities used in this experiment, the removal of PM from plant-leaf surfaces all increased with an increase in rainfall duration. When the particle size is 10-100-µm, and the rainfall intensity is 30 mm/h, the removal amount of plant particles tested in this experiment is the largest. With increased rainfall duration, the removal of PM from plant-leaf surfaces increased sharply at first, then slowly, and finally tended to be stable. The removal efficiency of PM on the blade surface is most apparent at the early stage of rainfall, and then gradually weakens. Among the four wetland plants tested in this experiment, in the range of 10-100-µm, the number of PM on the leaf surface of Scirpus validus is the largest, and the optimum rainfall intensity is 30 mm/h; in the range of 2.5-10-µm, the number of PM on the leaf surface of Typha orientalis is the largest, and the optimal rainfall intensity is 30 mm/h; in the range of 0.45-2.5-µm, the number of PM on the leaf surface of Iris wilsonii is the largest, and the optimal rainfall intensity is 15 mm/h. Wetland species with high particle accumulation capacity can provide references for vegetation restoration of degraded wetland plants and plant cultivation in constructed wetlands. At the same time, the best rainfall intensity and duration for removing particulate matter on the surface of plant leaves were obtained through experiments, which provided a reference for the design of automatic plant irrigation systems and dust removers in different scenarios.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Folhas de Planta/química , Áreas Alagadas
19.
J Environ Sci Health B ; 55(11): 959-967, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32781888

RESUMO

Ipomoea species are troublesome weeds in crop systems through Brazil. Drought stress typically reduces glyphosate efficacy by reducing the foliar uptake of herbicides and their translocation. Using both glyphosate tolerant (GT) and sensitive (GS) plants from Ipomoea grandifolia, I. indivisa and I. purpurea species, this research aimed to (a) correlate amounts of epicuticular wax and tolerance to glyphosate in plants and (b) determine the effect of drought stress (DStress) on changes in the quantity and chemical composition of plant epicuticular waxes. The dose that causes 50% inhibition of growth (GR50) of the biotypes varied between 62 and 1208 (I. grandifolia), 159 and 913 (I. indivisa), and 389 and 1925 g a.e. ha-1 of glyphosate (I. purpurea). There was low inverse correlation (-0.46) between the amount of epicuticular wax and the sensitivity to glyphosate. GT biotypes of the species presented greater plastic capacities than GS biotypes for increasing the amount of epicuticular wax under DStress. The three Ipomoea species exhibited different chemical profiles of waxes supported by IR spectra, which allows for their differentiation. For I. grandifolia and I. purpurea, there was an increase in the polar components in the state without DStress, while for the species I. indivisa, no differences in infrared spectra were detected between the two water conditions.


Assuntos
Glicina/análogos & derivados , Ipomoea/química , Ipomoea/efeitos dos fármacos , Ceras/química , Brasil , Desidratação , Relação Dose-Resposta a Droga , Secas , Glicina/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Folhas de Planta , Glifosato
20.
Plant J ; 93(1): 193-206, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29117637

RESUMO

Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 µm and 1 µm lateral resolution. Intense M+● and M-● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C21 -C30 ), hydrocarbons (C25 -C33 ) and wax esters (WEs; C44 -C48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C23 or C29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface.


Assuntos
Epiderme Vegetal/química , Populus/química , Espectrometria de Massa de Íon Secundário/métodos , Análise por Conglomerados , Análise Multivariada , Folhas de Planta/química , Análise de Componente Principal , Ceras/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa