Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107416, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810696

RESUMO

Autophagy is a pivotal regulatory and catabolic process, induced under various stressful conditions, including hypoxia. However, little is known about alternative splicing of autophagy genes in the hypoxic landscape in breast cancer. Our research unravels the hitherto unreported alternative splicing of BNIP3L, a crucial hypoxia-induced autophagic gene. We showed that BNIP3L, under hypoxic condition, forms two isoforms, a full-length isoform (BNIP3L-F) and a shorter isoform lacking exon 1 (BNIP3L-Δ1). The hypoxia-induced BNIP3L-F promotes autophagy, while under normoxia, the BNIP3L-Δ1 inhibits autophagy. We discovered a novel dimension of hypoxia-mediated epigenetic modification that regulates the alternative splicing of BNIP3L. Here, we showed differential DNA methylation of BNIP3L intron 1, causing reciprocal binding of epigenetic factor CCCTC-binding factor (CTCF) and its paralog BORIS. Additionally, we highlighted the role of CTCF and BORIS impacting autophagy in breast cancer. The differential binding of CTCF and BORIS results in alternative splicing of BNIP3L forming BNIP3L-F and BNIP3L-Δ1, respectively. The binding of CTCF on unmethylated BNIP3L intron 1 under hypoxia results in RNA Pol-II pause and inclusion of exon 1, promoting BNIP3L-F and autophagy. Interestingly, the binding of BORIS on methylated BNIP3L intron 1 under normoxia also results in RNA Pol-II pause but leads to the exclusion of exon 1 from BNIP3L mRNA. Finally, we reported the critical role of BORIS-mediated RNA Pol-II pause, which subsequently recruits SRSF6, redirecting the proximal splice-site selection, promoting BNIP3L-Δ1, and inhibiting autophagy. Our study provides novel insights into the potential avenues for breast cancer therapy by targeting autophagy regulation, specifically under hypoxic condition.

2.
Eur J Neurosci ; 59(10): 2826-2835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469939

RESUMO

The aim of this study was to clarify the effects of transcutaneous auricular vagus nerve stimulation (taVNS) to the left cymba concha on the pain perception using nociceptive withdrawal reflex (NWR), which is known to be associated with chronic pain, and to investigate whether there is a relationship between taVNS-induced suppression of the NWR and parasympathetic activation. We applied either 3.0 mA, 100 Hz taVNS for 120 s on the left cymba concha (taVNS condition) or the left earlobe (Sham condition) for 20 healthy adults. NWR threshold was measured before (Baseline), immediately after (Post 0), 10 min (Post 10) and 30 min after (Post 30) stimulation. The NWR threshold was obtained from biceps femoris muscle by applying electrical stimulation to the sural nerve. During taVNS, electrocardiogram was recorded, and changes in autonomic nervous activity measured by heart rate variability (HRV) were analyzed. We found that the NWR thresholds at Post 10 and Post 30 increased compared with baseline in the taVNS group (10 min after: p = .008, 30 min after: p = .008). In addition, increased parasympathetic activity by taVNS correlated with a greater increase in NWR threshold at Post 10 and Post 30 (Post 10: p = .003; Post 30: p = .001). The present results of this single-blinded study demonstrate the pain-suppressing effect of taVNS on NWR threshold and suggest that the degree of parasympathetic activation during taVNS may predict the pain-suppressing effect of taVNS after its application.


Assuntos
Frequência Cardíaca , Sistema Nervoso Parassimpático , Reflexo , Estimulação do Nervo Vago , Humanos , Masculino , Feminino , Adulto , Estimulação do Nervo Vago/métodos , Reflexo/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Adulto Jovem , Frequência Cardíaca/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Nociceptividade/fisiologia
3.
J Virol ; 97(12): e0171923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032199

RESUMO

IMPORTANCE: All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.


Assuntos
Infecções por Caliciviridae , Proteínas do Capsídeo , Norovirus , Animais , Camundongos , Substituição de Aminoácidos , Infecções por Caliciviridae/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Evasão da Resposta Imune , Norovirus/metabolismo , Proteínas do Core Viral/metabolismo
4.
Microb Pathog ; 187: 106487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158143

RESUMO

Escherichia coli LF82 (LF82) is associated with Crohn's disease. The simplicity and genetic maneuverability of honeybees' gut microbiota make them suitable for studying host-microbe interactions. To understand the interaction between LF82 and host gut, LF82 was used to infect germ-free honeybees (Apis mellifera) orally. We found that LF82 successfully colonized the gut and shortened the lifespan of germ-free bees. LF82 altered the gut structure and significantly increased gut permeability. RT-qPCR showed that LF82 infection activated anti-infective immune pathways and upregulated the mRNAs levels of antimicrobial peptides in the gut of germ-free bees. The gut transcriptome showed that LF82 significantly upregulated genes involved in Notch signaling, adhesion junctions, and Toll and Imd signaling pathways and downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, protein digestion and absorption, and tyrosine metabolism. In conclusion, the human-derived enteropathogenic bacterium LF82 can successfully colonize the gut of germ-free honeybees and cause enteritis-like changes, which provides an ideal model organism for revealing the pathogenesis of bacterial-associated diseases.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Abelhas , Humanos , Animais , Escherichia coli/genética , Mucosa Intestinal/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia
5.
J Sci Food Agric ; 104(10): 5896-5906, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477402

RESUMO

BACKGROUND: The structural changes of starch would have a more crucial impact on oil absorption and quality changes in starch-rich fruits and vegetables during frying process with enhanced heat transfer (such as infrared frying). In the present study, the influence of integrated ultrasonic and ethanol (US + ethanol) pretreatment on oil uptake in infrared fried (IF) ginkgo seeds was evaluated regarding modifications in the physicochemical properties of starch. The pretreatment was performed with ultrasonic (40 kHz, 300 W) and ethanol osmotic (95%, v/v) treatment individually or integrated for 40 min. RESULTS: The mass transfer in the pretreatment was facilitated by combined ultrasound and ethanol. The swelling power, solubility, and gelatinization degree of starch was significantly increased. Low-frequency-NMR curves and images revealed that the bound water fraction in ginkgo seeds was increased and the water distribution was homogenized. The results of Fourier transform-infrared spectrum and differential scanning calorimeter revealed that the crystalline regions of starch were reduced and the thermal enthalpy was decreased after US + ethanol pretreatment. The total, surface and structural oil content in IF ginkgo seeds with US + ethanol pretreatment was reduced by 29.10%, 34.52% and 29.73%, respectively. The US + ethanol pretreatment led to a thinner crust layer with increased porosity and smaller-sized pores in the IF ginkgo seeds as observed by stereo microscopy and scanning electron microscopy. CONCLUSION: The changes in structural and physicochemical properties of starch by combined ultrasound and ethanol affect the crust ratio and pore characteristics in fried high-starch fruits and vegetables, thereby reducing oil absorption. © 2024 Society of Chemical Industry.


Assuntos
Etanol , Ginkgo biloba , Sementes , Amido , Amido/química , Amido/metabolismo , Sementes/química , Etanol/química , Ginkgo biloba/química , Culinária , Solubilidade , Óleos de Plantas/química , Ultrassom , Temperatura Alta , Raios Infravermelhos , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Sci Food Agric ; 104(7): 4004-4014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252708

RESUMO

BACKGROUND: Licorice extract is an important raw material for food additives and medicine. The quality of licorice extract is dictated by the drying process. The commonly used drying methods of licorice extract are not efficient in obtaining high-quality products so alternative techniques need to be developed and researched. In this study, ultrasound-assisted vacuum drying (UAVD) was first utilized to improve drying efficiency and produce a higher-quality product. The changes in water mobility of licorice extract during drying were characterized using low-field nuclear magnetic resonance. In addition, the effects of ultrasonic power on the drying dynamics, the contents of liquiritin and glycyrrhizic acid, the antioxidant capacity and the microstructure formation of licorice extract during the whole drying process were investigated. RESULTS: The drying times for licorice extract to reach equilibrium moisture content were reduced by 9.09-69.70% with UAVD at 40-200 W compared with that without ultrasonic treatment (0 W). Moreover, the proportions of bound water and semi-bound water in fresh concentrate were 3.75% and 96.25%. It was also found that high ultrasonic power promoted the flow of water and the formation of porous structure in licorice extract, which led to the improvement of drying efficiency. The contents of liquiritin (2.444%) and glycyrrhizic acid (6.514%) were retained to a large degree in the dried product at an ultrasonic power of 80 W. The DPPH inhibition rate of UAVD samples with different ultrasonic powers ranged from 84.07 ± 0.46% to 90.65 ± 0.22%. CONCLUSION: UAVD has the advantages of high efficiency and low energy consumption, which may be an alternative technology for vacuum drying widely used in industry. © 2024 Society of Chemical Industry.


Assuntos
Glycyrrhiza , Ácido Glicirrízico , Extratos Vegetais , Ultrassom , Vácuo , Dessecação/métodos , Cinética , Água
7.
Funct Integr Genomics ; 23(4): 304, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726580

RESUMO

This study was designed to explore the influence of myelin protein zero-like protein 1 (MPZL1) on the stem-like properties of cancer cells and the underlying mechanism in lung adenocarcinoma. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to evaluate mRNA expression level. CCK8, wound healing, and transwell assays were applied to assess cell proliferation, migration, and invasion. Tumorsphere-formation assay was utilized to assess cancer stem cell-like properties. LF3 was used to block the ß-catenin/Transcription factor 4 (TCF-4) signaling. Xenograft nude mouse model was conducted; tumor weight and volume were recorded. Western blot assay was utilized to detect the expression levels of CD44, CD133, ß-catenin, TCF-4, and MPZL1. Following MPZL1 knockdown, the mRNA expression levels of MPZL1, ß-catenin, and TCF-4 were inhibited, while the mRNA expression levels of the above genes were increased after the MPZL1 overexpression. MPZL1 knockdown suppressed cell proliferation, migration, and invasion, reduced the tumorsphere-formation capacity, and restrained the expression levels of CD44 and CD133. However, MPZL1 overexpression promoted the cell proliferation, migration, and invasion, enhanced the tumorsphere-formation capacity, and increased the expression levels of CD44 and CD133. Interestingly, LF3 treatment partially revised the effect of MPZL1 overexpression. These findings were further corroborated by in vivo experiments. We concluded that MPZL1 could suppress the lung adenocarcinoma cells' proliferation, migration, invasion, and lung cancer stem cells characteristics. The underlying mechanism is involved in the activation of ß-catenin/TCF-4 signaling.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , beta Catenina/genética , Fator de Transcrição 4/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Transdução de Sinais , Modelos Animais de Doenças , Fosfoproteínas , Peptídeos e Proteínas de Sinalização Intracelular
8.
J Transl Med ; 21(1): 156, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855062

RESUMO

BACKGROUND: Although the relationship between type 2 diabetes (T2D) and the increased risk of colorectal carcinogenesis is widely defined in clinical studies, the therapeutic methods and molecular mechanism of T2D-induced colon cancer and how does hyperglycemia affect the progression is still unknown. Here, we studied the function of lactoferrin (LF) in suppressing the progression of colon cancer in T2D mice, and uncovered the related molecular mechanisms in DNA 5mC and RNA m6A levels. METHODS: We examined the effects of LF (50% iron saturation) on the migration and invasion of colon tumor cells under high concentration of glucose. Then, transcriptomics and DNA methylation profilings of colon tumor cells was co-analyzed to screen out the special gene (NT5DC3), and the expression level of NT5DC3 in 75 clinical blood samples was detected by q-PCR and western blot, to investigate whether NT5DC3 was a biomarker to distinguish T2D patients and T2D-induced colon cancer patients from healthy volunteers. Futhermore, in T2D mouse with xenografted colon tumor models, the inhibitory effects of LF and NT5DC3 protein on colon tumors were investigated. In addition, epigenetic alterations were measured to examine the 5mC/m6A modification sites of NT5DC3 regulated by LF. Utilizing siRNA fragments of eight m6A-related genes, the special gene (WTAP) regulating m6A of NT5DC was proved, and the effect of LF on WTAP/NT5DC3/HKDC1 axis was finally evaluated. RESULTS: A special gene NT5DC3 was screened out through co-analysis of transcriptomics and DNA methylation profiling, and HKDC1 might be a downstream sensor of NT5DC3. Mechanistically, LF-dependent cellular DNA 5mC and RNA m6A profiling remodeling transcriptionally regulate NT5DC3 expression. WTAP plays a key role in regulating NT5DC3 m6A modification and subsequently controls NT5DC3 downstream target HKDC1 expression. Moreover, co-treatment of lactoferrin and NT5DC3 protein restrains the growth of colon tumors by altering the aberrant epigenetic markers. Strikingly, clinical blood samples analysis demonstrates NT5DC3 protein expression is required to direct the distinction of T2D or T2D-induced colon cancer with healthy humans. CONCLUSIONS: Together, this study reveals that lactoferrin acts as a major factor to repress the progression of colon cancer under hyperglycemia, thus, significantly expanding the landscape of natural dietary mediated tumor suppression.


Assuntos
Neoplasias do Colo , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Animais , Camundongos , Lactoferrina/genética , Neoplasias do Colo/genética , Hiperglicemia/complicações , Hiperglicemia/genética , Modelos Animais de Doenças , Fatores de Processamento de RNA , Proteínas de Ciclo Celular , Hexoquinase
9.
Arch Microbiol ; 205(6): 218, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145326

RESUMO

The imbalance of Th17 and Treg cell differentiation, intestinal flora imbalance, and intestinal mucosal barrier damage may be important links in the occurrence and development of inflammatory bowel disease (IBD) since Th17 and Treg differentiation are affected by the intestinal flora. This study aimed to explore the effect of Escherichia coli (E. coli) LF82 on the differentiation of Th17 and Treg cells and the role of the intestinal flora in mouse colitis. The effects of E. coli LF82 infection on intestinal inflammation were evaluated by analyzing the disease activity index, histology, myeloperoxidase activity, FITC-D fluorescence value, and claudin-1 and ZO-1 expression. The effects of E. coli LF82 on the Th17/Treg balance and intestinal flora were analyzed by flow cytometry and 16S rDNA sequencing. Inflammatory markers, changes in the intestinal flora, and Th17/Treg cells were then detected after transplanting fecal bacteria from normal mice into colitis mice infected by E. coli LF82. We found that E. coli LF82 infection can aggravate the intestinal inflammation of mice colitis, destroy their intestinal mucosal barrier, increase intestinal mucosal permeability, and aggravate the imbalance of Th17/Treg differentiation and the disorder of intestinal flora. After improving the intestinal flora imbalance by fecal bacteria transplantation, intestinal inflammation and intestinal mucosal barrier damage were reduced, and the differentiation balance of Th17 and Treg cells was restored. This study showed that E. coli LF82 infection aggravates intestinal inflammation and intestinal mucosal barrier damage in colitis by affecting the intestinal flora composition and indirectly regulating the Th17 and Treg cell differentiation balance.


Assuntos
Colite , Infecções por Escherichia coli , Microbioma Gastrointestinal , Camundongos , Animais , Escherichia coli , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Infecções por Escherichia coli/microbiologia , Bactérias , Inflamação , Diferenciação Celular
10.
J Clin Periodontol ; 50(2): 183-199, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36089906

RESUMO

AIM: The regulation of osteoclasts (OCs) by inhibitory immunoreceptors maintains bone homeostasis and is considered an important determinant of the extent of periodontal pathology. The aim of this study was to investigate the role of the inhibitory immunoreceptor CD300lf and its ligand ceramide in osteoclastogenesis in periodontitis. MATERIALS AND METHODS: The expression of CD300lf was measured in vitro and in a ligature-induced periodontitis model. The effect of CD300lf ablation on osteoclastogenesis was examined in ligature-retained and ligature removal periodontitis models. The effect of ceramide, the ligand of CD300lf, was examined in osteoclastogenesis in vitro and in vivo by smearing 20 µg of ceramide dissolved in carboxymethylcellulose on teeth and gingiva every other day in an experimental periodontitis model and ligature removal model. RESULTS: CD300lf expression was downregulated during osteoclastogenesis. Ablation of CD300lf in the ligature-induced periodontitis model increased the number of OCs and exacerbated bone damage. Bone resorption caused by CD300lf ablation was reversible following ligature removal. CD300lf-ceramide binding suppressed osteoclastogenesis in vitro and inhibited alveolar bone loss in a mouse periodontitis model. CONCLUSIONS: Our findings reveal that CD300lf-ceramide binding plays a critical negative role in alveolar bone loss in periodontitis by inhibiting OCs differentiation.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/patologia , Ligantes , Osteoclastos , Osteogênese , Periodontite/metabolismo , Ligante RANK/metabolismo , Ceramidas/metabolismo
11.
J Endocrinol Invest ; 46(1): 79-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925468

RESUMO

PURPOSE: The relationship of CAN and BMD, fracture risk is still unclear in T2DM. The aim of the present study is to investigate the correlation between heart rate variability (HRV) and BMD in T2DM. METHODS: The study included 276 patients with T2DM aged ≥ 50 years, and Cardiovascular Autonomic Reflex Tests (CARTs) were applied to divide patients into two groups: CAN ( ±). 24 h Ambulatory ECG was assessed for HRV, BMD was measured by dual-energy X-ray bone densitometry, and FRAX scores were calculated for 10-year hip fracture risk (HF1) and major osteoporotic fracture risk (MOF). Adjusted regression analysis was performed to investigate influence factors for BMD and fracture risk. ROC curve was used to analyze the optimal cut-off point of LF/HF for screening osteoporosis. RESULTS: Baseline data showed significant differences in the duration of T2DM, insulin resistance index (HOMA-IR), 25-hydroxyvitamin D[25(OH)D], femoral neck BMD, hip BMD, lumbar BMD, HF1, and MOF between the CAN ( +) and CAN (-) groups. The proportion of patients with osteoporosis increased as the degree of CAN lesion increased. Correlation analysis showed that LF/HF was significantly correlated with BMD, especially with hip (r = - 0.534, p < 0.001). Regression analysis showed that LF/HF was a risk factor for reduced BMD and increased fracture risk. The optimal cut-point value for LF/HF to predict osteoporosis by ROC curve analysis was 3.17. CONCLUSIONS: CAN is associated with reduced BMD and increased fracture risk in patients with T2DM, and LF/HF may have the potential to be a predictor of diabetic osteoporosis and have some clinical value in early diagnosis of diabetic osteoporosis and non-traumatic fractures in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Fraturas por Osteoporose , Humanos , Densidade Óssea , Diabetes Mellitus Tipo 2/complicações , Frequência Cardíaca , Medição de Risco , Osteoporose/diagnóstico , Osteoporose/epidemiologia , Osteoporose/etiologia , Fraturas por Osteoporose/diagnóstico , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Absorciometria de Fóton , Fatores de Risco
12.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37669898

RESUMO

Small peptide aldehydes (SPAs) with protease inhibitory activity are naturally occurring compounds shown to be synthesized by non-ribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology and have been utilized as therapeutic agents. They are also physiologically relevant and have been postulated to regulate the development of their producing microorganisms. Previously, we identified an NRPS-like biosynthetic gene cluster (BGC) in Streptomyces lividans 66 that lacked a condensation (C) domain but included a tRNA-utilizing enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA, which we named livipeptin. Using evolutionary genome mining approaches, here, we confirm the presence of L/F transferase tRUEs within the genomes of diverse Streptomyces and related organisms, including fusions with the anticipated C-minus NRPS-like protein. We then demonstrate genetic functional cooperation between the identified L/F-transferase divergent tRUE homolog with the C-minus NRPS, leading to the synthesis of a metabolic fraction with protease inhibitory activity. Semisynthetic assays in the presence of RNAse revealed that the productive interaction between the tRUE and the C-minus NRPS enzymes is indeed tRNA dependent. We expect our findings to boost the discovery of SPAs, as well as the development of protease-mediated biotechnologies, by exploiting the uncovered genetic basis for synthesizing putative acetyl-leu/phe-arginine protease inhibitors. Furthermore, these results will facilitate the purification and structural elucidation of livipeptin, which has proven difficult to chemically characterize. SIGNIFICANCE: The discovery of natural products biosynthetic genes marks a significant advancement in our understanding of these metabolites, for example of their evolution, activity, and biosynthesis, but also opens biotechnological opportunities and knowledge to advance genome mining approaches. We made this possible by uncovering a new biosynthetic pathway in Streptomyces lividans 66 shown to direct the synthesis of a strong protease inhibitor, termed livipeptin, following unprecedented biosynthetic rules and genes. Thus, by shedding light on the genetic mechanisms predicted to govern the production of acetyl-leu/phe-arginine protease inhibitors, including the elusive livipeptin, this study enables novel protease-mediated biotechnologies as well as approaches for discovering protease inhibitors from genome data.


Assuntos
Anti-Infecciosos , Streptomyces lividans , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Inibidores de Proteases , Peptídeo Sintases/metabolismo , Peptídeos/genética , Peptídeo Hidrolases/genética , RNA de Transferência/genética , Transferases/genética , Arginina , Família Multigênica
13.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896686

RESUMO

The precise detection of stratum interfaces holds significant importance in geological discontinuity recognition and roadway support optimization. In this study, the model for locating rock interfaces through change point detection was proposed, and a drilling test on composite strength mortar specimens was conducted. With the logistic function and the particle swarm optimization algorithm, the drilling specific energy was modulated to detect the stratum interface. The results indicate that the drilling specific energy after the modulation of the logistic function showed a good anti-interference quality under stable drilling and sensitivity under interface drilling, and its average recognition error was 2.83 mm, which was lower than the error of 6.56 mm before modulation. The particle swarm optimization algorithm facilitated the adaptive matching of drive parameters to drilling data features, yielding a substantial 50.88% decrease in the recognition error rate. This study contributes to enhancing the perception accuracy of stratum interfaces and eliminating the potential danger of roof collapse.

14.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298273

RESUMO

In this paper, glutathione (GSH)-coated Zn-doped CdTe quantum dots (QDs) with different particle sizes were synthesized using the "reflow method", and the interaction mechanism between the two QDs and lactoferrin (LF) was investigated systemically with different spectroscopic methods. The steady-state fluorescence spectra showed that the LF formed a tight complex with the two QDs through static bursting and that the electrostatic force was the main driving force between the two LF-QDs systems. The complex generation process was found to be spontaneous (ΔG < 0) and accompanied by exothermic and increasing degrees of freedom (ΔH < 0, ΔS > 0) by using the temperature-dependent fluorescence spectroscopy. The critical transfer distance (R0) and donor-acceptor distance (r) of the two LF-QDs systems were obtained based on the fluorescence resonance energy transfer theory. In addition, it was observed that the QDs changed the secondary and tertiary structures of LF, leading to an increase in the hydrophobicity of LF. Further, the nano-effect of orange QDs on LF is much larger than that of green QDs. The above results provide a basis for metal-doped QDs with LF in safe nano-bio applications.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Lactoferrina , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Espectrometria de Fluorescência , Zinco/química
15.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175396

RESUMO

The rapid increase in additive manufacturing applications in all industries has highlighted the lack of innovative technologies and processes in the construction industry. Several European and international policies are in place to guide the development of the technological processes involved in the construction industry toward a sustainable future. Considering the global concerns regarding this industry, the purpose of this study was to develop new cement-based materials that are capable of accelerated hydration and early strength development for use in additive manufacturing. Ca(NO3)2·4H2O, Al2(SO4)3·18H2O and Na2S2O3·5H2O were used to obtain the accelerating effect in the hydration of Portland cement. Based on results obtained from X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX) techniques, as well as low-field nuclear magnetic resonance relaxometry (LF-NMR) techniques, it was demonstrated that all accelerators used have a quickening effect on cement hydration. The addition of Na2S2O3·5H2O or combined Na2S2O3·5H2O and Ca(NO3)2·4H2O led to obtaining new cement-based materials with early strength development and fast hydration of microorganized internal structures, critical characteristics for 3D printing.


Assuntos
Fenômenos Químicos , Difração de Raios X , Espectrometria por Raios X
16.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003277

RESUMO

Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.


Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Humanos , Vitamina A/metabolismo , Transcriptoma , Cirrose Hepática/genética , Cirrose Hepática/terapia , Cirrose Hepática/induzido quimicamente , Fígado/metabolismo , Hepatopatias/metabolismo , Obesidade/metabolismo , Ácidos e Sais Biliares/metabolismo , Células-Tronco Mesenquimais/patologia
17.
Entropy (Basel) ; 25(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36981411

RESUMO

Utilizing low-rank prior data in compressed sensing (CS) schemes for Landsat 8-9 remote sensing images (RSIs) has recently received widespread attention. Nevertheless, most CS algorithms focus on the sparsity of an RSI and ignore its low-rank (LR) nature. Therefore, this paper proposes a new CS reconstruction algorithm for Landsat 8-9 remote sensing images based on a non-local optimization framework (NLOF) that is combined with non-convex Laplace functions (NCLF) used for the low-rank approximation (LAA). Since the developed algorithm is based on an approximate low-rank model of the Laplace function, it can adaptively assign different weights to different singular values. Moreover, exploiting the structural sparsity (SS) and low-rank (LR) between the image patches enables the restored image to obtain better CS reconstruction results of Landsat 8-9 RSI than the existing models. For the proposed scheme, first, a CS reconstruction model is proposed using the non-local low-rank regularization (NLLRR) and variational framework. Then, the image patch grouping and Laplace function are used as regularization/penalty terms to constrain the CS reconstruction model. Finally, to effectively solve the rank minimization problem, the alternating direction multiplier method (ADMM) is used to solve the model. Extensive numerical experimental results demonstrate that the non-local variational framework (NLVF) combined with the low-rank approximate regularization (LRAR) method of non-convex Laplace function (NCLF) can obtain better reconstruction results than the more advanced image CS reconstruction algorithms. At the same time, the model preserves the details of Landsat 8-9 RSIs and the boundaries of the transition areas.

18.
J Food Sci Technol ; 60(7): 1960-1969, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37206427

RESUMO

Alginate (ALG) and various gums are potential biomaterials to be employed in hydrogel designs for both food and biomedical applications. This study evaluated a multicomplex design by combining food grade polymers to examine their polymer-polymer interactions and design an oral delivery system for pomegranate concentrate (PC). ALG was replaced with gum tragacanth (GT), xanthan (XN) and their equal combinations (GT:XN) at 50% ratio in hydrogel fabrication. In addition to CaCI2 in binding solution, honey (H) and chitosan (CH) were also used during physical crosslinking. Relaxation time constants in NMR indicated poor ability of GT for water entrapment especially in the presence of honey (S2H). They also confirmed FTIR results indicating similar trends. Strong negative correlations were observed between T2 and texture results. GT replacement of ALG especially in the use of single CaCI2 (S2) promoted higher PC release up to 80% in digestive media compared to XN substitution (S3). This study promoted use of LF NMR as an indicator for polymer mixture characterization in complex gels. ALG based gels could be modified by replacing ALG with different kinds of gums and with use of different binding solutions to regulate target compound release in food and pharmaceutical fields. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05730-2.

19.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177207

RESUMO

Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.


Assuntos
Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/imunologia , Intestinos/imunologia , Norovirus/fisiologia , Receptores Imunológicos/fisiologia , Tropismo Viral , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Feminino , Intestinos/virologia , Masculino , Camundongos , Camundongos Knockout
20.
Sens Actuators B Chem ; 351: 130975, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36568876

RESUMO

As the world has been facing several deadly virus crises, including Zika virus disease, Ebola virus disease, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Coronavirus disease 2019 (COVID-19), lateral flow assays (LFAs), which require minimal equipment for point-of-care of viral infectious diseases, are garnering much attention. Accordingly, there is an increasing demand to reduce the time and cost required for manufacturing LFAs. The current study introduces an equipment-free method of salt-mediated immobilization of nucleic acids (SAIoNs) for LFAs. Compared to general DNA immobilization methods such as streptavidin-biotin, UV-irradiation, and heat treatment, our method does not require special equipment (e.g., centrifuge, UV-crosslinker, heating device); therefore, it can be applied in a resource-limited environment with reduced production costs. The immobilization process was streamlined and completed within 30 min. Our method improved the color intensity signal approximately 14 times compared to the method without using SAIoNs and exhibited reproducibility with the long-term storage stability. The proposed method can be used to detect practical targets (e.g., SARS-CoV-2) and facilitates highly sensitive and selective detection of target nucleic acids with multiplexing capability and without any cross-reactivity. This novel immobilization strategy provides a basis for easily and inexpensively developing nucleic acid LFAs combined with various types of nucleic acid amplification.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa