RESUMO
Ligand-decorated nanoparticles are extensively studied and applied for in vivo drug delivery and molecular imaging. Generally, two different ligand-decoration procedures are utilized; ligands are either conjugated with nanoparticle ingredients and incorporated during nanoparticle preparation, or they are attached to preformed nanoparticles by utilizing functionalized reactive surface groups (e.g., maleimide). Although the two procedures result in nanoparticles with very similar physicochemical properties, formulations obtained through the latter manufacturing process typically contain nonconjugated reactive surface groups. In the current study, we hypothesized that the different ligand-decoration procedures might affect the extent of interaction between nanoparticles and immune cells (especially phagocytes). In order to investigate our hypothesis, we decorated lipidic nanoparticles with a widely used cyclic Arg-Gly-Asp (cRGD) peptide using the two different procedures. As proven from in vivo experiments in mice, the presence of nonconjugated surface moieties results in increased recognition by the immune system. This is important knowledge considering the emerging focus on understanding and optimizing ways to target and track immune cells and the development of nanomedicine-based strategies in the field of immunotherapy.
Assuntos
Composição de Medicamentos/métodos , Nanoconjugados/administração & dosagem , Oligopeptídeos/administração & dosagem , Fagócitos/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Imunoterapia/métodos , Ligantes , Lipossomos , Maleimidas/química , Camundongos , Camundongos Endogâmicos BALB C , Nanoconjugados/química , Nanomedicina/métodos , Oligopeptídeos/química , Fagócitos/imunologiaRESUMO
The blood-brain barrier (BBB) is a highly sophisticated system with the ability to regulate compounds transporting through the barrier and reaching the central nervous system (CNS). The BBB protects the CNS from toxins and pathogens but can cause major issues when developing novel therapeutics to treat neurological disorders. PLGA nanoparticles have been developed to successfully encapsulate large hydrophilic compounds for drug delivery. Within this paper, we discuss the encapsulation of a model compound Fitc-dextran, a large molecular weight (70 kDa), hydrophilic compound, with over 60% encapsulation efficiency (EE) within a PLGA nanoparticle (NP). The NP surface was chemically modified with DAS peptide, a ligand that we designed which has an affinity for nicotinic receptors, specifically alpha 7 nicotinic receptors, found on the surface of brain endothelial cells. The attachment of DAS transports the NP across the BBB by receptor-mediated transcytosis (RMT). Assessment of the delivery efficacy of the DAS-conjugated Fitc-dextran-loaded PLGA NP was studied in vitro using our optimal triculture in vitro BBB model, which successfully replicates the in vivo BBB environment, producing high TEER (≥230 ) and high expression of ZO1 protein. Utilising our optimal BBB model, we successfully transported fourteen times the concentration of DAS-Fitc-dextran-PLGA NP compared to non-conjugated Fitc-dextran-PLGA NP. Our novel in vitro model is a viable method of high-throughput screening of potential therapeutic delivery systems to the CNS, such as our receptor-targeted DAS ligand-conjugated NP, whereby only lead therapeutic compounds will progress to in vivo studies.
RESUMO
Hyperbranched polymers (HBPs) have found use in a wide range of applications, such as optical, electronic and magnetic materials, coatings, additives, supramolecular chemistry, and biomedicine. HBPs have gained attention for the development of drug delivery systems due to the presence of internal cavities in their three-dimensional globular structure that can be used to encapsulate drugs and their facile synthesis as compared to dendrimers. The composition, topology, and functionality of HBPs have been tuned to design drug carriers with better efficacies. Recent advances have been reported to introduce functional groups to enhance targeting tumor cells. HBPs have been modified to promote passive and active targeting. This review article will describe the different routes to synthesize hyperbranched polymer, their use as drug carriers for targeted drug delivery, and their functionalization with ligands for active targeting through various synthesis strategies to give the reader an extended overview of the progresses accomplished in this field. The modification of HBPs with ligands such as peptides, oligonucleotides, and folic acid have been demonstrated to enhance the accumulation of the drug selectively at the tumor sites. The potential uses and developments of HBPs as nanoobjects for theranostics for example are discussed as perspectives.
Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Portadores de FármacosRESUMO
A dual-action ligand targeting both integrin αVß3 and vascular endothelial growth factor receptors (VEGFRs), was synthesized via conjugation of a cyclic peptidomimetic αVß3 Arg-Gly-Asp (RGD) ligand with a decapentapeptide. The latter was obtained from a known VEGFR antagonist by acetylation at the Lys13 side chain. Functionalization of the precursor ligands was carried out in solution and in the solid phase, affording two fragments: an alkyne VEGFR ligand and the azide integrin αVß3 ligand, which were conjugated by click chemistry. Circular dichroism studies confirmed that both the RGD and VEGFR ligand portions of the dual-action compound substantially adopt the biologically active conformation. In vitro binding assays on isolated integrin αVß3 and VEGFR-1 showed that the dual-action conjugate retains a good level of affinity for both its target receptors, although with one order of magnitude (10/20 times) decrease in potency. The dual-action ligand strongly inhibited the VEGF-induced morphogenesis in Human Umbilical Vein Endothelial Cells (HUVECs). Remarkably, its efficiency in preventing the formation of new blood vessels was similar to that of the original individual ligands, despite the worse affinity towards integrin αVß3 and VEGFR-1.