Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 209: 107406, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278298

RESUMO

Affinity-oriented online ligand screening with LC coupled to different detectors is widely popular to capture active compounds from herbal medicines (HMs). However, false-positive extensively occurs because insufficient information is recorded for the existence and stability of ligand-protein complex. Here, efforts were made to advance the hit confidences via configuring post-column infusion-LC-energy-resolved-affinity MS (PCI-LC-ER-AMS) to achieve "four-in-one" monitoring of: 1) response decrement of potential ligands; 2) response decrement of protein; 3) ions relating to ligand-protein complexes; and 4) ligand-protein binding strength. Ligand fishing for Cyt C from HMs was conducted as a proof-of-concept. For utility justification, a mimic sample containing twelve well-defined ligands and two negative controls underwent LC separation and met Cyt C prior to Qtof-MS measurements. Compared to Cyt C- or ligand-free assay, twelve ligands instead of negative controls showed response decrements that were consistent with twelve negative peaks observed at retention times corresponding to the ligands in Cyt C ion current chromatogram. Serial ions correlating to each ligand-Cyt C complex were observed. After recording breakdown graphs, optimal collision energy (OCE) corresponding to the non-covalent bond dissociation was positively correlated with binding strength. Two HMs including Scutellariae Radix (SR) and Aconiti Lateralis Radix Preparata were investigated. Consequently, 24 compounds were merely fished from SR, and particularly, flavonoid glycosides exhibited greater OCEs and also binding strengths over aglycones. Affinity assays and cellular evaluations consolidated the significant interactions between each captured compound and Cyt C. Overall, PCI-LC-ER-AMS is eligible for confidence-enhanced online ligand screening for Cyt C from HMs through "four-in-one" measurement.

2.
Nano Lett ; 23(10): 4111-4119, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36948207

RESUMO

The effect of an externally applied directional force on molecular friction is so far poorly understood. Here, we study the force-driven dissociation of the ligand-protein complex biotin-streptavidin and identify anisotropic friction as a not yet described type of molecular friction. Using AFM-based stereographic single molecule force spectroscopy and targeted molecular dynamics simulations, we find that the rupture force and friction for biotin-streptavidin vary with the pulling angle. This observation holds true for friction extracted from Kramers' rate expression and by dissipation-corrected targeted molecular dynamics simulations based on Jarzynski's identity. We rule out ligand solvation and protein-internal friction as sources of the angle-dependent friction. Instead, we observe a heterogeneity in free energy barriers along an experimentally uncontrolled orientation parameter, which increases the rupture force variance and therefore the overall friction. We anticipate that anisotropic friction needs to be accounted for in a complete understanding of friction in biomolecular dynamics and anisotropic mechanical environments.


Assuntos
Biotina , Simulação de Dinâmica Molecular , Biotina/química , Estreptavidina/química , Fricção , Ligantes , Microscopia de Força Atômica
3.
J Biomol Struct Dyn ; 41(14): 6957-6968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35993479

RESUMO

The peptide Mucroporin and its analog Mucroporin-M1 were studied using the molecular docking and molecular dynamics simulation of their complexation with two protein targets, the Heptad Repeat 1 (HR1) domain and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The molecular docking of the peptide-protein complexes was performed using the glowworm swarm optimization algorithm. The lowest energy poses were submitted to molecular dynamics simulation. Then, the binding free energies of Mucroporin and its analog Mucroporin-M1 with these two protein targets were calculated using the Multistate Bennett Acceptance Ratio (MBAR) method. It was verified that the peptides/HR1 domain complex showed stability in the interaction site determined by molecular docking. It was also found that Mucroporin-M1 has a much higher affinity than Mucroporin to the HR1 protein target. The peptides showed similar stability and affinity at the NTP binding site in the RdRp protein. Additional experimental studies are needed to confirm the antiviral activity of Mucroporin-M1 and a possible mechanism of action against SARS-CoV-2. However, here we indicate that Mucroporin-M1 may have potential antiviral activity against the HR1 domain with the possibility for further peptide optimization.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 41(20): 10546-10557, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36476274

RESUMO

The interactions of the antiviral pentapeptide ATN-161 with the closed and open conformations of the α5ß1 integrin, the SARS-CoV-2 major protease, and the omicron variant spike protein complexed with hACE2 were studied using molecular docking and molecular dynamics simulation. Molecular docking was performed to obtain ATN-161 binding poses with these studied protein targets. Subsequently, molecular dynamics simulations were performed to verify the ligand stability at the binding site of each protein target. Pulling simulations, umbrella sampling, and weighted histogram analysis method were used to obtain the potential of mean force of each system and calculate the Gibbs free energy of binding for the ATN-161 peptide in each binding site of these protein targets. The results showed that ATN-161 binds to α5ß1 integrin in its active and inactive form, binds weakly to the omicron variant spike protein complexed with hACE2, and strongly binds to the main protease target.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus , Peptídeos , Peptídeo Hidrolases , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Integrinas , Inibidores de Proteases
5.
Materials (Basel) ; 15(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208030

RESUMO

Parallel cascade selection molecular dynamics (PaCS-MD) is a rare-event sampling method that generates transition pathways between a reactant and product. To sample the transition pathways, PaCS-MD repeats short-time MD simulations from important configurations as conformational resampling cycles. In this study, PaCS-MD was extended to sample ligand binding pathways toward a target protein, which is referred to as LB-PaCS-MD. In a ligand-concentrated environment, where multiple ligand copies are randomly arranged around the target protein, LB-PaCS-MD allows for the frequent sampling of ligand binding pathways. To select the important configurations, we specified the center of mass (COM) distance between each ligand and the relevant binding site of the target protein, where snapshots generated by the short-time MD simulations were ranked by their COM distance values. From each cycle, snapshots with smaller COM distance values were selected as the important configurations to be resampled using the short-time MD simulations. By repeating conformational resampling cycles, the COM distance values gradually decreased and converged to constants, meaning that a set of ligand binding pathways toward the target protein was sampled by LB-PaCS-MD. To demonstrate relative efficiency, LB-PaCS-MD was applied to several proteins, and their ligand binding pathways were sampled more frequently than conventional MD simulations.

6.
Front Mol Biosci ; 9: 1066029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703920

RESUMO

The salt bridge is the strongest non-covalent interaction in nature and is known to participate in protein folding, protein-protein interactions, and molecular recognition. However, the role of salt bridges in the context of drug design has remained not well understood. Here, we report that a common feature in the mechanism of inhibition of the N-myristoyltransferases (NMT), promising targets for the treatment of protozoan infections and cancer, is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of the enzyme. Substituting the inhibitor positively charged amine group with a neutral methylene group prevents the formation of the salt bridge and leads to a dramatic activity loss. Molecular dynamics simulations have revealed that salt bridges stabilize the NMT-ligand complexes by functioning as molecular clips that stabilize the conformation of the protein structure. As such, the creation of salt bridges between the ligands and their protein targets may find an application as a valuable tool in rational drug design.

7.
J Cheminform ; 11(1): 24, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903304

RESUMO

Docking is commonly used in drug discovery to predict how ligand binds to protein target. Best programs are generally able to generate a correct solution, yet often fail to identify it. In the case of drug-like molecules, the correct and incorrect poses can be sorted by similarity to the crystallographic structure of the protein in complex with reference ligands. Fragments are particularly sensitive to scoring problems because they are weak ligands which form few interactions with protein. In the present study, we assessed the utility of binding mode information in fragment pose prediction. We compared three approaches: interaction fingerprints, 3D-matching of interaction patterns and 3D-matching of shapes. We prepared a test set composed of high-quality structures of the Protein Data Bank. We generated and evaluated the docking poses of 586 fragment/protein complexes. We observed that the best approach is twice as accurate as the native scoring function, and that post-processing is less effective for smaller fragments. Interestingly, fragments and drug-like molecules both proved to be useful references. In the discussion, we suggest the best conditions for a successful pose prediction with the three approaches.

8.
J Mol Model ; 24(12): 342, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30460461

RESUMO

The glucocorticoid receptors (GR) are members of the nuclear receptor superfamily that regulate growth, development, and many of the biological functions, including metabolism and inflammation, in a ligand dependent behavior. Thus, GRs are vital as therapeutic targets with steroid hormones and steroidal analogues, especially including the glucocorticoids. Studying the molecular mechanism of binding between GR and ligands is fundamentally important to develop applications in the pharmacological industry. The present study was carried out via molecular docking and molecular dynamic (MD) simulations of three GR-ligand complexes formed between the ligand binding domain (LBD) of GR with cortisol (a natural steroid), dexamethasone (a well-known synthetic steroid drug), and chonemorphine (a steroid virtually screened from the "Sri Lankan Flora" web-based information system). The investigation was mainly carried out in terms of macroscopic properties of the ligand-protein interactions and conformational fluctuations of the protein. The results indicated greater stability and a similar behavior of the GR protein in the chonemorphine-GR complex, compared to the other two complexes, GR-dexamethasone and GR-cortisol, in an aqueous medium. The integrity of the protein-substrate complexes was preserved by strong hydrogen bonds formed between the amino acid residues of the binding site of the proteins and ligands. The findings revealed that chonemorphine is a promising agonist to GR and may produce a pharmacological effect like that produced by glucocorticoids. Thus, the obtained knowledge could lead to further investigations of the pharmaceutical potential of chonemorphine and biological functions of GR in vivo.


Assuntos
Glucocorticoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de Glucocorticoides/química , Dexametasona/química , Dexametasona/metabolismo , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/química , Hidrocortisona/metabolismo , Ligantes , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Receptores de Glucocorticoides/metabolismo , Termodinâmica
9.
Biophys Physicobiol ; 13: 181-194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924273

RESUMO

The accurate prediction of a ligand-protein complex structure is important for computer-assisted drug development. Although many docking methods have been developed over the last three decades, the success of binding structure prediction remains greatly limited. The purpose of this study was to demonstrate the usefulness of molecular dynamics (MD) simulation in assessing a docking pose predicted using a docking program. If the predicted pose is not unstable in an aqueous environment, MD simulation equilibrates the system and removes the ligand from the predicted position. Here we investigated two proteins that are important potential therapeutic targets: ß2 adrenergic receptor (ß2AR) and PR-Set7. While ß2AR is rigid and its ligands are very similar to the template ligand (carazolol), PR-Set7 is very flexible and its ligands vary greatly from the template ligand (histone H4 tail peptide). On an empirical basis, we usually expect that the docking prediction is accurate when the protein is rigid and its ligands are similar to the template ligand. The MD analyses in this study clearly suggested such a tendency. Furthermore, we discuss the possibility that the MD simulation can predict the binding pose of a ligand.

10.
Int J Biol Macromol ; 80: 529-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26193679

RESUMO

Caffeoylquinic acid and its isomers inhibited porcine Pancreatic Lipase (PL) activity according to a competitive mode where binding and interaction with the catalytic triad of Ser153, His264 and Asp177 simultaneously occurred. The IC50 values under which 3-caffeoylquinic acid (CQA) and its isomers 4-, 5-CQA, 3,4-, 3,5- and 4,5-diCQA inhibited half of the porcine PL activity were 1.10, 1.23, 1.24, 0.252, 0.591 and 0.502 mM, respectively. The binding affinities in the range from -8.4 to -9.5 kCal/mol were well predicted from docking, which showed a high linear correlation coefficient of 0.893 and Spearman correlation of 1.0 with log(IC50) values. Caffeoylquinic acid and its isomers were stabilized by hydrogen bond and hydrophobic interaction in the binding pocket. This finding provided molecular mechanism of coffee and other natural food or drink containing caffeoylquinic acid and its isomers against lipase activity.


Assuntos
Domínio Catalítico , Lipase/química , Ácido Quínico/análogos & derivados , Animais , Ligação Competitiva , Catálise , Hidrólise , Isomerismo , Cinética , Ligantes , Lipase/antagonistas & inibidores , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Ácido Quínico/química , Ácido Quínico/farmacologia , Suínos
11.
J Mol Model ; 21(11): 283, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26450350

RESUMO

Thermodynamic integration (TI) molecular dynamics (MD) simulations for the binding of a pair of a reference ("ref") ligand and an analogous ("analog") ligand to either tagged (with six extra residues at the N-terminus) or untagged p38 kinase proteins were carried out in order to probe how the binding affinity is influenced by the presence or absence of the peptide tag in p38 kinase. This possible effect of protein length on the binding affinity of a ligand-which is seldom addressed in the literature-is important because, even when two labs claim to have performed experiments with the same protein, they may actually have studied variants of the same protein with different lengths because they applied different protein expression conditions/procedures. Thus, if we wanted to compare ligand binding affinities measured in the two labs, it would be necessary to account for any variation in ligand binding affinity with protein length. The pair of ligand-p38 kinase complexes examined in this work (pdb codes: 3d7z and 3lhj, respectively) were ideal for investigating this effect. The experimentally determined binding energy for the ref ligand with the untagged p38 kinase was -10.9 kcal mol(-1), while that for the analog ligand with the tagged p38 kinase was -11.9 kcal mol(-1). The present TI-MD simulation of the mutation of the ref ligand into the analog ligand while the ligand is bound to the untagged p38 kinase predicted that the binding affinity of the analog ligand is 2.0 kcal mol(-1) greater than that of the ref ligand. A similar simulation also indicated that the same was true for ligand binding to the tagged protein, but in this case the binding affinity for the analog ligand is 2.5 kcal mol(-1) larger than that for the ref ligand. These results therefore suggest that the presence of the peptide tag on p38 kinase increased the difference in the binding energies of the ligands by a small amount of 0.5 kcal mol(-1). This result supports the assumption that the presence of a peptide tag has only a minor effect on ΔG values. The error bars in the computed ΔG values were then estimated via confidence interval analysis and a time autocorrelation function for the quantity dV/dλ. The estimated correlation time was ~0.5 ps and the error bar in the ΔG values estimated using nanosecond-scale simulations was ±0.3 kcal mol(-1) at a confidence level of 95%. These predicted results can be verified in future experiments and should prove useful in subsequent similar studies. Graphical Abstract Thermodynamic cycles for binding of two analogous ligands with untagged and tagged p38 kinases and associated Gibbs free energy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa