Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 27(1): 189-199, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34843001

RESUMO

Mutagenic agents such as aromatic amines undergo metabolic activation and produce DNA adducts at C8 position of guanine bases. N-2-acetylaminofluorene (AAF) generates different mutational outcomes when placed at G1, G2, and G3 of a NarI sequence (-G1G2CG3CC/T-). These outcomes are dictated by the conformations adopted by these adducts. Detection of such lesions is of considerable interest owing to their hazardous effects. Here, we report the synthesis of three cyclometalated [Ir(L)2dppz]+ complexes (L = 2-phenylpyridine (ppy) 1; benzo[h]quinoline (bhq) 2; 2-phenylquinoline (pq) 3; dppz = dipyrido[3,2-a:2',3'-c]phenazine) and their interaction with AAF adducted NarI DNA. Remarkably, complexes 1 and 2 displayed dominant 3LC transition characteristic of polar environment despite binding to the adducted sites. On the other hand, complex 3 binds to NarI sequences and behaves as a luminescent reporter for AAF-modified DNA. The results reported here emphasize that molecular light switching phenomenon can be stimulated by switching ancillary ligands and might act as potential probes for covalent-DNA defects.


Assuntos
2-Acetilaminofluoreno , Adutos de DNA , 2-Acetilaminofluoreno/química , DNA , Ligantes , Conformação Molecular
2.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445244

RESUMO

Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.


Assuntos
Proteínas Fúngicas , Microrganismos Geneticamente Modificados , Neurospora crassa/genética , Optogenética , Fotorreceptores Microbianos , Saccharomyces cerevisiae , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Neurospora crassa/metabolismo , Fotorreceptores Microbianos/biossíntese , Fotorreceptores Microbianos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Beilstein J Org Chem ; 17: 1503-1508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239618

RESUMO

Novel nitrogen-bridged diazocines (triazocines) were synthesized that carry a formyl or an acetyl group at the CH2NR-bridge and bromo- or iodo-substituents at the distant phenyl ring. The photophysical properties were investigated in acetonitrile and water. As compared to previous approaches the yields of the intramolecular azo cyclizations were increased (from ≈40 to 60%) using an oxidative approach starting from the corresponding aniline precursors. The Z→E photoconversion yields in acetonitrile are 80-85% and the thermal half-lives of the metastable E configurations are 31-74 min. Particularly, the high photoconversion yields (≈70%) of the water-soluble diazocines are noteworthy, which makes them promising candidates for applications in photopharmacology. The halogen substituents allow further functionalization via cross-coupling reactions.

4.
Chemistry ; 26(71): 17103-17109, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32725823

RESUMO

Ultrafast time-resolved infrared (TRIR) is used to report on the binding site of the [Ru(phen)2 (dppz)]2+ "light-switch" complex with both bimolecular (Oxytricha nova telomere) and intramolecular (human telomere) guanine-quadruplex structures in both K+ and Na+ containing solutions. TRIR permits the simultaneous monitoring both of the "dark" and "bright" states of the complex and of the quadruplex nucleobase bases, the latter via a Stark effect induced by the excited state of the complex. These data are used to establish the contribution of guanine base stacking and loop interactions to the binding site of this biologically relevant DNA structure in solution. A particularly striking observation is the strong thymine signal observed for the Na+ form of the human telomere sequence, which is expected to be in the anti-parallel conformation.

5.
Molecules ; 24(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791625

RESUMO

[Ru(bpy)2dppz]2+ and [Ru(phen)2dppz]2+ as the light switches of the deoxyribose nucleic acid (DNA) molecule have attracted much attention and have become a powerful tool for exploring the structure of the DNA helix. Their interactions have been intensively studied because of the excellent photophysical and photochemical properties of ruthenium compounds. In this perspective, this review describes the recent developments in the interactions of these two classic intercalated compounds with a DNA helix. The mechanism of the molecular light switch effect and the selectivity of these two compounds to different forms of a DNA helix has been discussed. In addition, the specific binding modes between them have been discussed in detail, for a better understanding the mechanism of the light switch and the luminescence difference. Finally, recent studies of single molecule force spectroscopy have also been included so as to precisely interpret the kinetics, equilibrium constants, and the energy landscape during the process of the dynamic assembly of ligands into a single DNA helix.


Assuntos
DNA/química , Substâncias Intercalantes/química , Compostos de Rutênio/química , Sítios de Ligação , Cinética , Ligantes , Luminescência , Modelos Teóricos , Conformação Molecular , Estrutura Molecular
6.
J Biol Inorg Chem ; 21(2): 227-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748794

RESUMO

G-quadruplexes are non-canonical DNA structures formed by guanine-rich DNA sequences that are implicated in cancer and aging. Understanding how small molecule ligands interact with quadruplexes is essential both to the development of novel anticancer therapeutics and to the design of new quadruplex-selective probes needed for elucidation of quadruplex biological functions. In this work, UV-visible, fluorescence, and circular dichroism spectroscopies, fluorescence resonance energy transfer (FRET) melting assays, and resonance light scattering were used to investigate how the Pt(II) and Pd(II) derivatives of the well-studied 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) interact with quadruplexes formed by the human telomeric DNA, Tel22, and by the G-rich sequences from oncogene promoters. Our results suggest that Pt- and PdTMPyP4 interact with Tel22 via efficient π-π stacking with a binding affinity of 10(6)-10(7) M(-1). Under porphyrin excess, PtTMPyP4 aggregates using Tel22 as a template; the aggregates reach maximum size at [PtTMPyP4]/[Tel22] ~8 and dissolve at [PtTMPyP4]/[Tel22] ≤ 2. FRET assays reveal that both porphyrins are excellent stabilizers of human telomeric DNA, with stabilization temperature of 30.7 ± 0.6 °C for PtTMPyP4 and 30.9 ± 0.4 °C for PdTMPyP4 at [PtTMPyP4]/[Tel22] = 2 in K(+) buffer, values significantly higher as compared to those for TMPyP4. The porphyrins display modest selectivity for quadruplex vs. duplex DNA, with selectivity ratios of 150 and 330 for Pt- and PdTMPyP4, respectively. This selectivity was confirmed by observed 'light switch' effect: fluorescence of PtTMPyP4 increases significantly in the presence of a variety of DNA secondary structures, yet the strongest effect is produced by quadruplex DNA.


Assuntos
Quadruplex G , Paládio/química , Platina/química , Porfirinas/química , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
7.
Chemistry ; 22(2): 550-9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26560887

RESUMO

Recognition and regulation of G-quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo-substituent to the dipyridylphenazine (dppz) ligands in the photophysical "light switch", [Ru(bpy)2 dppz](2+) , and the photochemical "light switch", [Ru(bpy)2 dmdppz](2+) , creates compounds with increased selectivity for an intermolecular parallel G-quadruplex and the mixed-hybrid G-quadruplex, respectively. When [Ru(bpy)2 dppz-Br](2+) and [Ru(bpy)2 dmdppz-Br](2+) are incubated with the G-quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2 dmdppz-Br](2+) with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of Ru(II) complexes can alter G-quadruplex selectivity, and could be useful for the rational design of in vivo G-quadruplex probes.


Assuntos
Complexos de Coordenação/química , DNA/química , Ácidos Nucleicos/química , Fenazinas/química , Dicroísmo Circular , Quadruplex G , Rutênio/química
8.
Nano Lett ; 15(7): 4758-68, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26086686

RESUMO

Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanotecnologia/instrumentação , Nanofios/química , Silício/química , Transistores Eletrônicos , Animais , Complexo Antígeno-Anticorpo/análise , Biocatálise , Desenho de Equipamento , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Luz , Nanofios/ultraestrutura
9.
Chemistry ; 20(47): 15426-33, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25279951

RESUMO

The synthesis of a trisheteroleptic ruthenium complex [Ru(tb)(dppz)(tmbiH2 )][PF6 ]2 (tb=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazin, tmbiH2 =5,6,5',6'-tetramethyl-2,2'-bibenzimidazole) is described. In addition, the structural characterisation by means of 1D, 2D (1) H NMR spectroscopy, and mass spectrometry, along with determination of the solid-state structure of the important precursor Ru(tb)(dppz)Cl2 , supports the proposed octahedral coordination geometry. The capability of tmbiH2 to form hydrogen bonds is corroborated by the solid-state structure. The photochemical characteristics of this complex can be described as a combination of the "light switch" effects, which are either attributed to the dppz or to the tmbiH2 ligand. To illustrate the molecule's double switchable features, steady-state absorption and emission measurements were performed, which include the determination of the quantum yield and the pKa values of the acidic protons of the tmbiH2 ligand. Notably, the emission lifetimes are sensitive to the solvents used. This phenomenon is due to a proton-coupled deactivation of the excited metal-to-ligand charge transfer (MLCT) state of the complex.

10.
Int J Biol Macromol ; 242(Pt 1): 124710, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146854

RESUMO

To further develop new luminescent probes for RNA, a new ruthenium(II) polypyridyl complex [Ru(dmb)2dppz-idzo]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine, dppz-idzo = dppz-imidazolone) has been synthesized and characterized in this study. Binding properties of [Ru(dmb)2dppz-idzo]2+ to RNA duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U) have been explored by spectroscopic techniques and viscometry experiments. The binding modes of [Ru(dmb)2dppz-idzo]2+ to RNA duplex and triplex are intercalation as revealed from spectral titrations and viscosity experiments, while the binding strength of this complex to duplex structure is significantly greater than that of triplex structure. Fluorescence titrations indicate that [Ru(dmb)2dppz-idzo]2+ can act as a molecular "light switch" for both duplex poly(A) · poly(U) and triplex poly(U) · poly(A) ∗ poly(U), while [Ru(dmb)2dppz-idzo]2+ is more sensitive to poly(A) · poly(U) compared to poly(U) · poly(A) ∗ poly(U) and poly(U). Therefore, this complex can distinguish between RNA duplex, triplex and poly(U), and can as luminescent probes for the three RNAs used in this study. In addition, thermal denaturation studies show that [Ru(dmb)2dppz-idzo]2+ is able to significantly increase the Stabilization of RNA duplex and triplex. The results obtained in this study may contribute to further understanding of the binding of Ru(II) complexes with different structural RNAs.


Assuntos
Rutênio , Rutênio/química , RNA/química , Poli U/química , Análise Espectral , Poli A/química
11.
J Inorg Biochem ; 249: 112388, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837940

RESUMO

Eight [Ru(bpy)2L]2+ and three [Ru(phen)2L]2+complexes (where bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline are ancillary ligands, and L = a polypyridyl experimental ligand) were investigated for their G-quadruplex binding abilities. Fluorescence resonance energy transfer melting assays were used to screen these complexes for their ability to selectively stabilize human telomeric DNA variant, Tel22. The best G-quadruplex stabilizers were further characterized for their binding properties (binding constant and stoichiometry) using UV-vis, fluorescence spectroscopy, and mass spectrometry. The ligands' ability to alter the structure of Tel22 was determined via circular dichroism and PAGE studies. We identified me2allox as the experimental ligand capable of conferring excellent stabilizing ability and good selectivity to polypyridyl Ru(II) complexes. Replacing bpy by phen did not significantly impact interactions with Tel22, suggesting that binding involves mostly the experimental ligand. However, using a particular ancillary ligand can help fine-tune G-quadruplex-binding properties of Ru(II) complexes. Finally, the fluorescence "light switch" behavior of all Ru(II) complexes in the presence of Tel22 G-quadruplex was explored. All Ru(II) complexes displayed "light switch" properties, especially [Ru(bpy)2(diamino)]2+, [Ru(bpy)2(dppz)]2+, and [Ru(bpy)2(aap)]2+. Current work sheds light on how Ru(II) polypyridyl complexes interact with human telomeric DNA with possible application in cancer therapy or G-quadruplex sensing.


Assuntos
Quadruplex G , Rutênio , Humanos , Rutênio/química , Ligantes , DNA/química , Transferência Ressonante de Energia de Fluorescência
12.
J Inorg Biochem ; 237: 111991, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115329

RESUMO

To further determine the factors that affect the binding properties of ruthenium(II) polypyridine complexes with RNA duplex and to find excellent RNA-binding agents, the binding properties of ruthenium(II) complexes [Ru(phen)2(7-OCH3-dppz)]2+ (Ru1, phen = 1,10-phenan- throline, 7-OCH3-dppz = 7-methoxy-dipyrido-[3,2-a,2',3'-c]-phenazine) and [Ru(phen)2(7-NO2- dppz)]2+ (Ru2, 7-NO2-dppz = 7-nitro-dipyrido-[3,2-a,2',3'-c]-phenazine) with RNA poly(A)•poly(U) duplex have been investigated by spectroscopic methods and viscosity measurements in this work. The results show that complexes Ru1 and Ru2 bind to poly(A)•poly(U) through intercalation and the binding affinity between Ru2 and poly(A)•poly(U) is greater than that of Ru1. Thermal denaturation experiments suggest that both ruthenium(II) complexes exhibit a significant stabilizing effect on poly(A)•poly(U) duplex. Moreover, fluorescence emission spectra exhibit that, deviating from Ru2, Ru1 exhibits a "light switch" effect for poly(A)•poly(U). This effect can be observed by the naked eye under UV light and adjusted by pH, meaning that Ru1 may act as a reversible pH controlled molecular "light switch". The results obtained in this work will contribute to our understanding of the significant influence of the intercalative ligand substituent effect in the binding process of ruthenium(II) complexes with RNA duplex.


Assuntos
Poli A , Rutênio , Poli A/química , Rutênio/química , Dióxido de Nitrogênio , RNA/química , Fenazinas
13.
Biotechnol Adv ; 59: 107953, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398205

RESUMO

Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.


Assuntos
Optogenética , Biologia Sintética , Luz , Optogenética/métodos
14.
J Biomol Struct Dyn ; 39(16): 5953-5962, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32720579

RESUMO

Ruthenium(II) complexes containing phenazine ring have attracted attention to design as 'molecular light switches'. In this study, we synthesized two ruthenium complexes containing phenazine ring and studied their abilities to function as DNA intercalators, DNA 'light switches', DNA topo I inhibitors, DNA photocleavers and potential antitumor reagents. [Ru(bpy)2(mbipz)](PF6)2 (1) (bpy = 2,2'-bipyridine, mbipz = 2-(4'-methyl-bipyridine-4-yl)-1H-imidazo[4,5-b]phenazine) exhibited off-on type DNA 'light swtich' behavior. DNA binding modes of the two complexes were determined as intercalation by using UV-vis spectra, emission spectra, viscosity and molecular docking experiments. DNA photocleavage experimental results showed that the two ruthenium complexes effectively cleave plasmid DNA by producing singlet oxygen. Furthermore, they displayed good topo I inhibition activities. We further found that the two complexes displayed good antitumor activities against Eca-109 cells and A549 cells. The results demonstrated that introduction of phenazine ring will be helpful to design DNA 'light switch' based on ruthenium complex.Communicated by Ramaswamy H. Sarma.


Assuntos
Rutênio , DNA , DNA Topoisomerases Tipo I , Simulação de Acoplamento Molecular , Fenazinas
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117356, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31351422

RESUMO

A new fluorescent light switch method, which based on N­acetyl­l­cysteine capped CdTe QDs (NALC-CdTe QDs), was developed for the detection of gallic acid (GA). The QDs possess a fluorescence emission wavelength at 520nm and with symmetric fluorescence. When KMnO4 is added, the high fluorescence of QDs could be effectively quenched for the electron transfer process between KMnO4 and QDs. But with the addition of GA, the fluorescence of KMnO4-QDs system could recover for the reason that redox reaction of GA and KMnO4. Therefore, a fluorescent light switch method could be used for GA with a detection range of 0.6-12.6µg·mL-1 and a detection limit of 0.56ng·mL-1. Furthermore, the feasibility of the proposed fluorescence biosensor in tea was also studied and satisfactory results were obtained.


Assuntos
Compostos de Cádmio/química , Corantes Fluorescentes/química , Ácido Gálico/análise , Pontos Quânticos/química , Chá/química , Telúrio/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
16.
Adv Sci (Weinh) ; 7(13): 1903661, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32670752

RESUMO

MicroRNAs (miRNAs) have been widely investigated as potential biomarkers for early clinical diagnosis of cancer. Developing an miRNA detection platform with high specificity, sensitivity, and exploitability is always necessary. Electrochemiluminescence (ECL) is an electrogenerated chemiluminescence technology that greatly decreases background noise and improves detection sensitivity. The development of a paper-based ECL biosensor further makes ECL suitable for point-of-care detection. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a as high-fidelity, efficient, and programmable CRISPR RNA (crRNA) guided RNase has brought a next-generation biosensing technology. However, existing CRISPR/Cas13a based detection often faces a trade-off between sensitivity and specificity. In this research, a CRISPR/Cas13a powered portable ECL chip (PECL-CRISPR) is constructed. Wherein target miRNA activates Cas13a to cleave a well-designed preprimer, and triggers the subsequent exponential amplification and ECL detection. Under optimized conditions, a limit-of-detection of 1 × 10-15 m for miR-17 is achieved. Through rationally designing the crRNA, the platform can provide single nucleotide resolution to dramatically distinguish miRNA target from its highly homologous family members. Moreover, the introduction of "light-switch" molecule [Ru(phen)2dppz]2+ allows the platform to avoid tedious electrode modification and washing processes, thereby simplifying the experimental procedure and lower testing cost. Analysis results of miRNA from tumor cells also demonstrate the PECL-CRISPR platform holds a promising potential for molecular diagnosis.

17.
ACS Appl Mater Interfaces ; 12(3): 3465-3473, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31913004

RESUMO

The high-resolution technique transmission electron microscopy (TEM), with OsO4 as the traditional fixative, is an essential tool for cell biology and medicine. Although OsO4 has been extensively used, it is far from perfect because of its high volatility and toxicity. Os(II) polypyridyl complexes like [Os(phen)2(dppz)]2+ (phen = 1,10-phenanthroline; dppz = dipyridophenazine) are not only the well-known molecular DNA "light-switches" but also the potential ideal candidates for TEM studies. Here, we report that the cell-impermeable cationic [Os(phen)2(dppz)]2+ can be preferentially delivered into the live-cell nucleus through ion-pairing with chlorophenolate counter-anions, where it functions as an unparalleled enantioselective nuclear DNA imaging reagent especially suitable for correlative light and electron microscopy (CLEM) studies in both living and fixed cells, which can clearly visualize chromosome aggregation and decondensation during mitosis simultaneously. We propose that the chiral Os(II) polypyridyl complexes can be used as a distinctive group of enantioselective high-resolution CLEM imaging probes for live-cell nuclear DNA studies.


Assuntos
Núcleo Celular/química , DNA/química , Tetróxido de Ósmio/química , Fenantrolinas/química , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , DNA/genética , Humanos , Microscopia , Microscopia Eletrônica de Transmissão , Mitose , Estereoisomerismo
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 212: 240-245, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30641364

RESUMO

The interaction of [Ru(phen)2dppz-idzo]2+ (phen = 1,10-phenanthroline, dppz-idzo = dppz-imidazolone) with triplex RNA poly(U)·poly(A)*poly(U) was carried out by using spectroscopic and viscometric techniques in this work. Luminescent titrations suggest that [Ru(phen)2dppz-idzo]2+ shows better selectivity for poly(U)·poly(A)*poly(U) compared with poly(U)·poly(A) and poly(U), this complex exhibits a "light switch" effect with an emission enhancement factor of about 123 in the presence of poly(U)·poly(A)*poly(U). Significantly, this "light switch" behavior could even be observed by the naked eye under irradiation with UV light. To our knowledge, [Ru(bpy)2dppz-idzo]2+ is the first small molecule able to serve as a colorimetric molecular "light switch" for the triplex poly(U)·poly(A)*poly(U). Combined with the spectral and viscometric results as well as [Ru(phen)2dppz-idzo]2+ stabilizing the template duplex poly(U)·poly(A), we speculate that [Ru(phen)2dppz-idzo]2+ prefers to bind with the Hoogsteen base-paired strand (the third strand) of the triplex, thus the intercalating [Ru(phen)2dppz-idzo]2+ stabilizing the third strand is more marked in comparison with the Watson-Crick base-paired duplex of the triplex. The results obtained here may be useful for understanding the interaction of triplex RNA poly(U)·poly(A)*poly(U) with small molecule, particularly ruthenium(II) complexes.


Assuntos
Colorimetria/métodos , Conformação de Ácido Nucleico , Poli A/química , Poli U/química , Piridinas/química , RNA/química , Rutênio/química , Pareamento de Bases , Dicroísmo Circular , Desnaturação de Ácido Nucleico , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura , Viscosidade
19.
J Porphyr Phthalocyanines ; 23(11n12): 1195-1215, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34385812

RESUMO

N-methyl mesoporphyrin IX (NMM) is a water-soluble, non-symmetric porphyrin with excellent optical properties and unparalleled selectivity for G-quadruplex (GQ) DNA. G-quadruplexes are non-canonical DNA structures formed by guanine-rich sequences. They are implicated in genomic stability, longevity, and cancer. The ability of NMM to selectively recognize GQ structures makes it a valuable scaffold for designing novel GQ binders. In this review, we survey the literature describing the GQ-binding properties of NMM as well as its wide utility in chemistry and biology. We start with the discovery of the GQ-binding properties of NMM and the development of NMM-binding aptamers. We then discuss the optical properties of NMM, focusing on the light-switch effect - high fluorescence of NMM induced upon its binding to GQ DNA. Additionally, we examine the affinity and selectivity of NMM for GQs, as well as its ability to stabilize GQ structures and favor parallel GQ conformations. Furthermore, a portion of the review is dedicated to the applications of NMM-GQ complexes as biosensors for heavy metals, small molecules (e.g. ATP and pesticides), DNA, and proteins. Finally and importantly, we discuss the utility of NMM as a probe to investigate the roles of GQs in biological processes.

20.
J Biomol Struct Dyn ; 36(8): 1948-1957, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28633570

RESUMO

The interaction of Δ- and Λ-[Ru(phen)2DPPZ]2+ (DPPZ = dipyrido[3,2-a:2', 3'-c]phenazine, phen = phenanthroline) with a G-quadruplex formed from 5'-G2T2G2TGTG2T2G2-3'(15-mer) was investigated. The well-known enhancement of luminescence intensity (the 'light-switch' effect) was observed for the [Ru(phen)2DPPZ]2+ complexes upon formation of an adduct with the G-quadruplex. The emission intensity of the G-quadruplex-bound Λ-isomer was 3-fold larger than that of the Δ-isomer when bound to the G-quadruplex, which is opposite of the result observed in the case of double stranded DNA (dsDNA); the light switch effect is larger for the dsDNA-bound Δ-isomer. In the job plot of the G-quadruplex with Δ- and Λ-[Ru(phen)2DPPZ]2+, a major inflection point for the two isomers was observed at x ≈ .65, which suggests a binding stoichiometry of 2:1 for both enantiomers. When the G base at the 8th position was replaced with 6-methyl isoxanthopterin (6MI), a fluorescent guanine analog, the excited energy of 6-MI transferred to bound Δ- or Λ-[Ru(phen)2DPPZ]2+, which suggests that at least a part of both Ru(II) enantiomers is close to or in contact with the diagonal loop of the G-quadruplex. A luminescence quenching experiment using [Fe(CN)6]4- for the G-quadruplex-bound Ru(II) complex revealed downward bending curves for both enantiomers in the Stern-Volmer plot, which suggests the presence of Ru(II) complexes that are both accessible and inaccessible to the quencher and may be related to the 2:1 binding stoichiometry.


Assuntos
DNA/química , Quadruplex G , Compostos Organometálicos/química , Fenantrolinas/química , Rutênio/química , Algoritmos , Sítios de Ligação , Dicroísmo Circular , DNA/metabolismo , Transferência de Energia , Fluorescência , Guanina/química , Guanina/metabolismo , Estrutura Molecular , Compostos Organometálicos/metabolismo , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa