RESUMO
Phase transitions occurring in nonequilibrium conditions can evolve through high-energy intermediate states inaccessible via equilibrium adiabatic conditions. Because of the subtle nature of such hidden phases, their direct observation is extremely challenging and requires simultaneous visualization of matter at subpicoseconds and subpicometer scales. Here, we show that a magnetite crystal in the vicinity of its metal-to-insulator transition evolves through different hidden states when controlled via energy-tuned ultrashort laser pulses. By directly monitoring magnetite's crystal structure with ultrafast electron diffraction, we found that upon near-infrared (800 nm) excitation, the trimeron charge/orbital ordering pattern is destroyed in favor of a phase-separated state made of cubic-metallic and monoclinic-insulating regions. On the contrary, visible light (400 nm) activates a photodoping charge transfer process that further promotes the long-range order of the trimerons by stabilizing the charge density wave fluctuations, leading to the reinforcement of the monoclinic insulating phase. Our results demonstrate that magnetite's structure can evolve through completely different metastable hidden phases that can be reached long after the initial excitation has relaxed, breaking ground for a protocol to control emergent properties of matter.
RESUMO
2D materials (2DMs), due to spin-valley locking degree of freedom, exhibit strongly bound exciton and chiral optical selection rules and become promising material candidates for optoelectronic and spin/valleytronic devices. Over the last decade, the manifesting of 2D materials by circularly polarized lights expedites tremendous fascinating phenomena, such as valley/exciton Hall effect, Moiré exciton, optical Stark effect, circular dichroism, circularly polarized photoluminescence, and spintronic property. In this review, recent advance in the interaction of circularly polarized light with 2D materials covering from graphene, black phosphorous, transition metal dichalcogenides, van der Waals heterostructures as well as small proportion of quasi-2D perovskites and topological materials, is overviewed. The confronted challenges and theoretical and experimental opportunities are also discussed, attempting to accelerate the prosperity of chiral light-2DMs interactions.
RESUMO
The use of photonic concepts to achieve nanoactuation based on light triggering requires complex architectures to obtain the desired effect. In this context, the recent discovery of reversible optical control of the domain configuration in ferroelectrics offers a light-ferroic interplay that can be easily controlled. To date, however, the optical control of ferroelectric domains has been explored in single crystals, although polycrystals are technologically more desirable because they can be manufactured in a scalable and reproducible fashion. Here we report experimental evidence for a large photostrain response in polycrystalline BaTiO3 that is comparable to their electrostrain values. Domains engineering is performed through grain size control, thereby evidencing that charged domain walls appear to be the functional interfaces for the light-driven domain switching. The findings shed light on the design of high-performance photoactuators based on ferroelectric ceramics, providing a feasible alternative to conventional voltage-driven nanoactuators.
RESUMO
Finding a feasible principle for a future generation of nano-optomechanical systems is a matter of intensive research, because it may provide new device prospects for optoelectronics and nanomanipulation techniques. Here we show that the strain of a ferroelectric crystal can be manipulated to achieve macroscopic, stable, and reproducible dimensional changes using illumination with photon energy below the material bandgap. The photoresponse can be activated without direct light incidence on the actuation area, because the cooperative nature of the phenomenon extends the photoinduced strain to the whole material. These results may be useful for developing the next generation of high-efficiency photocontrolled ferroelectric devices.
RESUMO
The remote controlling of ferroic properties with light is nowadays a hot and highly appealing topic in materials science. Here, we shed light on some of the unresolved issues surrounding light-matter coupling in ferroelectrics. Our findings show that the capacitance and, consequently, its related intrinsic material property, i.e., the dielectric constant, can be reversibly adjusted through the light power control. High photodielectric performance is exhibited across a wide range of the visible light wavelength because of the wavelength-independence of the phenomenon. We have verified that this counterintuitive behavior can be strongly ascribed to the existence of "locally free charges" at domain wall.