Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513799

RESUMO

The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and characterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Iridoides/farmacologia , Neoplasias/prevenção & controle , Azeite de Oliva/análise , Aldeídos/química , Aldeídos/farmacologia , Aldeídos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Monoterpenos Ciclopentânicos/química , Monoterpenos Ciclopentânicos/farmacologia , Monoterpenos Ciclopentânicos/uso terapêutico , Dieta Mediterrânea , Glucosídeos/química , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Glucosídeos Iridoides , Iridoides/química , Iridoides/isolamento & purificação , Iridoides/uso terapêutico , Neoplasias/dietoterapia , Azeite de Oliva/farmacologia , Fenóis/química , Fenóis/farmacologia , Fenóis/uso terapêutico , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Piranos/química , Piranos/farmacologia , Piranos/uso terapêutico
2.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668791

RESUMO

The beneficial properties of phenolic compounds from Olea europaea L. are well-known. An olive extract (OE) was prepared from unripe olives (Moraiolo cultivar). The study aimed to formulate OE into a microemulsion (ME) in oral dosage form. OE was extracted from olives with EtOH:H2O (80:20) and characterized by HPLC-DAD. ME composition was stated by a solubility and pseudo-ternary diagram. The ME was chemically and physically characterized, and its stability at 4 °C was analyzed for three months. The ability of the formulation to ameliorate the solubility and the intestinal permeability of OE was evaluated by a Parallel Artificial Membrane Permeability Assay (PAMPA) assay and Caco-2 cells. The total phenolic content of the extract was 39% w/w. The main constituent was oleuropein (31.0%), together with ligstroside (3.1%) and verbascoside (2.4%). The ME was prepared using Capryol 90 as the oily phase, and Cremophor EL and Transcutol (2:1) as surfactant and co-surfactant, respectively. ME droplet size was 14.03 ± 1.36 nm, PdI 0.20 ± 0.08, ζ-potential -1.16 ± 0.48. Stability of ME was confirmed for at least three months. The formulation was loaded with 35 mg/mL of OE, increasing the solubility of the extract by about four times. The enhanced permeability of OE was evaluated by PAMPA, as demonstrated by the Pe value (1.44 ± 0.83 × 10-6 cm/s for OE hydroalcoholic solution, 3.74 ± 0.34 × 10-6 cm/s for OE-ME). Caco-2 cell transport studies confirmed the same results: Papp was 16.14 ± 0.05 × 10-6 cm/s for OE solution and 26.99 ± 0.45 × 10-6 cm/s for OE-ME. ME proved to be a suitable formulation for oral delivery.


Assuntos
Emulsões , Olea/química , Fenóis , Extratos Vegetais/química , Disponibilidade Biológica , Células CACO-2 , Composição de Medicamentos , Emulsões/química , Emulsões/farmacocinética , Humanos , Permeabilidade , Fenóis/química , Fenóis/farmacocinética , Solubilidade
3.
Planta ; 250(6): 2083-2097, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31578603

RESUMO

MAIN CONCLUSION: Two newly identified phytohormone cleaving esterases from Olea europaea are responsible for the glucosidase-initiated activation of the specialized metabolites ligstroside and oleuropein. Biosynthetic routes leading to the formation of plant natural products are tightly orchestrated enzymatic sequences usually involving numerous specialized catalysts. After their accumulation in plant cells and tissues, otherwise non-reactive compounds can be enzymatically activated, e.g., in response to environmental threats, like pathogen attack. In olive (Olea europaea), secoiridoid-derived phenolics, such as oleuropein or ligstroside, can be converted by glucosidases and as yet unidentified esterases to oleoside aldehydes. These are not only involved in pathogen defense, but also bear considerable promise as pharmaceuticals or neutraceuticals. Making use of the available olive genomic data, we have identified four novel methylesterases that showed significant homology to the polyneuridine aldehyde esterase (PNAE) from Rauvolfia serpentina, an enzyme acting on a distantly related metabolite group (monoterpenoid indole alkaloids, MIAs) also featuring a secoiridoid structural component. The four olive enzymes belong to the α/ß-hydrolase fold family and showed variable in vitro activity against methyl esters of selected plant hormones, namely jasmonic acid (MeJA), indole acetic acid (MeIAA), as well as salicylic acid (MeSA). None of the identified catalysts were directly active against the olive metabolites oleuropein, ligstroside, or oleoside 11-methyl ester. When employed in a sequential reaction with an appropriate glucosidase, however, two were capable of hydrolyzing these specialized compounds yielding reactive dialdehydes. This suggests that the esterases play a pivotal role in the activation of the olive secoiridoid polyphenols. Finally, we show that several of the investigated methylesterases exhibit a concomitant in vitro transesterification capacity-a novel feature, yielding ethyl esters of jasmonic acid (JA) or indole-3-acetic acid (IAA).


Assuntos
Ésteres/metabolismo , Glucosídeos/metabolismo , Glucosídeos Iridoides/metabolismo , Iridoides/metabolismo , Olea/enzimologia , Proteínas de Plantas/metabolismo , Piranos/metabolismo
4.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185655

RESUMO

The health claims of olive oil represent an important marketing lever in raising the willingness to pay for a product, but world producers of extra virgin olive oil (EVOO) do not take advantage of it because there are still obstacles to their use. Among these, one issue is the lack of an official method for determination of all free and linked forms derived from secoiridoidic structures of hydroxytyrosol and tyrosol. In this study, different acidic hydrolytic procedures for analyzing the linked forms were tested. The best method was validated and then applied to more than 100 EVOOs. The content of oleuropein and ligstroside derivatives in EVOOs was indirectly evaluated comparing the amount of phenols before and after hydrolysis. After acidic hydrolysis, a high content of total tyrosol was found in most of the EVOOs. The use of a suitable corrective factor for the evaluation of hydroxytyrosol allows an accurate determination only using pure tyrosol as a standard. Further knowledge on the concentration of total hydroxytyrosol will assist in forecasting the resistance of oils against aging, its antioxidant potential and to better control its quality over time.


Assuntos
Formiatos/química , Azeite de Oliva/química , Álcool Feniletílico/análogos & derivados , Polifenóis/química , Ácidos Sulfúricos/química , Hidrólise , Itália , Álcool Feniletílico/análise , Álcool Feniletílico/química , Padrões de Referência
5.
Molecules ; 20(12): 22202-19, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26690403

RESUMO

The bark, seeds, fruits and leaves of the genus Fraxinus (Oleaceae) which contain a wide range of phytochemicals, mostly secoiridoid glucosides, have been widely used in folk medicine against a number of ailments, yet little is known about the metabolism and uptake of the major Fraxinus components. The aim of this work was to advance in the knowledge on the bioavailability of the secoiridoids present in a Fraxinus angustifolia Vahl seed/fruit extract using both targeted and untargeted metabolomic analyses. Plasma and urine samples from nine healthy volunteers were taken at specific time intervals following the intake of the extract and analyzed by UPLC-ESI-QTOF. Predicted metabolites such as tyrosol and ligstroside-aglycone glucuronides and sulfates were detected at low intensity. These compounds reached peak plasma levels 2 h after the intake and exhibited high variability among the participants. The ligstroside-aglycone conjugates may be considered as potential biomarkers of the Fraxinus secoiridoids intake. Using the untargeted approach we additionally detected phenolic conjugates identified as ferulic acid and caffeic acid sulfates, as well as hydroxybenzyl and hydroxyphenylacetaldehyde sulfate derivatives which support further metabolism of the secoiridoids by phase I and (or) microbial enzymes. Overall, the results of this study suggest low uptake of intact secoiridoids from a Fraxinus angustifolia Vahl extract in healthy human volunteers and metabolic conversion by esterases, glycosidases, and phase II sulfo- and glucuronosyl transferases to form smaller conjugated derivatives.


Assuntos
Fraxinus/química , Frutas/química , Glucosídeos/sangue , Glucuronídeos/sangue , Iridoides/sangue , Piranos/sangue , Sementes/química , Adulto , Disponibilidade Biológica , Biotransformação , Ácidos Cafeicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Cumáricos/isolamento & purificação , Feminino , Glucosídeos/urina , Glucuronídeos/urina , Voluntários Saudáveis , Humanos , Hidroxibenzoatos , Iridoides/urina , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Piranos/urina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sulfatos
6.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37507887

RESUMO

The effects of the phenolic compounds of extra virgin olive oil (EVOO) on AGS cells have never been studied so far, which is the aim of this study. The profiles of the main phenolic components in EVOOs, mainly secoiridoid compounds derived from the transformation of oleuropein during the olive milling process, were evaluated and compared. Oils of different origins were evaluated aiming at verifying whether chemical differences in the phenolic composition of the dry extracts played a role in the metabolism and in maintaining the cellular redox state of AGS cells. The following key enzymes of some metabolic pathways were studied: lactate dehydrogenase, enolase, pyruvate kinase, glucose 6-phosphate dehydrogenase, citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and hexokinase. As confirmed through PCA analysis, pretreatments with the dry extracts of EVOOs at different concentrations appeared to be able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The studied phytocomplexes showed the ability to protect AGS cells from oxidative damage and the secoiridoid derivatives from both oleuropein and ligstroside contributed to the observed effects. The results suggested that EVOOs with medium to high concentrations of phenols can exert this protection.

7.
J Agric Food Chem ; 70(44): 14109-14128, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301258

RESUMO

Virgin olive oil (VOO) is the main fat consumed by populations in the Mediterranean basin, and phenolic compounds, minor components of this fat, are known to be responsible for diverse health benefits when consumed in a regular diet. According to numerous investigations, these benefits are mostly related to phenols such as tyrosol and hydroxytyrosol and secoiridoid derivatives such as ligstroside, oleuropein, oleocanthal and oleacein. These compounds are present in low concentrations, and for some of them, standards are not commercially available, hampering studies on the mechanisms underlying their biological activity. In order to contribute to a better knowledge of the bioactivity of these compounds and their metabolites, they must be available with high purity and in sufficient amounts for the assays. Chemical synthesis has been considered a convenient way to obtain these compounds. This Review will focus on the synthesis of representative VOO compounds, namely, ligstroside, oleuropein, oleocanthal, oleacein and analogues.


Assuntos
Fenóis , Azeite de Oliva/química , Fenóis/química
8.
Foods ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34574160

RESUMO

Secoiridoids play a key role in determining health benefits related to a regular consumption of extra-virgin olive oil (EVOO), in which they are generated from precursors of the same class naturally occurring in drupes and leaves of the olive (Olea europaea L.) plant. Here, reversed-phase liquid chromatography coupled to electrospray ionization and Fourier-transform single/tandem mass spectrometry (RPLC-ESI-FTMS and MS/MS) was employed for a structural elucidation of those precursors. The presence of three isoforms in both matrices was assessed for oleuropein ([M-H]- ion with m/z 539.1770) and was emphasized, for the first time, also for ligstroside (m/z 523.1821) and for the demethylated counterparts of the two compounds (m/z 525.1614 and 509.1665, respectively). However, only the prevailing isoform included an exocyclic double bond between carbon atoms C8 and C9, typical of oleuropein and ligstroside; the remaining, less abundant, isoforms included a C=C bond between C8 and C10. The same structural difference was also observed between secoiridoids named elenolic acid glucoside and secoxyloganin (m/z 403.1246). This study strengthens the hypothesis that secoiridoids including a C8=C10 bond, recently recognized as relevant species in EVOO extracts, arise mainly from specific enzymatic/chemical transformations occurring on major oleuropein/ligstroside-like precursors during EVOO production, rather than from precursors having that structural feature.

9.
Food Chem ; 342: 128357, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33508902

RESUMO

Phenolic compounds in virgin olive oil (VOO) contribute to its health properties, organoleptic features and oxidative stability. In this study, a total of 44 olive tree cultivars categorized by the International Olive Council to be among the most internationally widespread varieties were exhaustively and homogenously evaluated by analysis of the VOO phenolic profile during three consecutive crop seasons. Differences among cultivars resulted in up to 15-fold variations in the total phenol concentration. The 'cultivar' factor contributed the most to the variance (66.8% for total phenolic concentration) for almost all the phenols. However, the 'interannual variability' factor and the interaction 'cultivar x interannual variability' exhibited significant influences on specific phenols. According to the phenolic profile of the VOOs, we determined the presence of three groups of cultivars marked by the predominance of secoiridoid derivatives, which supports the phenolic profile as a criterion to be considered in olive breeding programs.


Assuntos
Azeite de Oliva/análise , Fenóis/análise , Cromatografia Líquida de Alta Pressão , Extração Líquido-Líquido , Olea/genética , Olea/crescimento & desenvolvimento , Olea/metabolismo , Fenóis/isolamento & purificação , Melhoramento Vegetal , Análise de Componente Principal , Estações do Ano , Espectrometria de Massas em Tandem
10.
J Agric Food Chem ; 67(5): 1546-1553, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30636418

RESUMO

Olives are inedible because of high levels of bitter phenolics (e.g., oleuropein) which are removed during commercial olive processing. Current commercial processing methods are highly water-intensive, produce toxic wastewater, and are environmentally unsustainable. To address this, macroreticular polymeric resins were used to assist debittering and decrease water use. Amberlite resins XAD4, XAD16N, XAD7HP, and FPX66 were evaluated for the ability to adsorb bitter and/or high-value phenolic compounds (i.e., oleuropein, ligstroside, oleuropein aglycone, ligstroside aglycone, oleocanthal, oleacein, and hydroxytyrosol) from whole olives during typical brine storage. All resins effectively adsorbed oleuropein and ligstroside. FPX66 reduced oleuropein in whole olives suspended in a 1.0% acetic acid brine to 0.635 mg/kg wet weight in 2.5 months with no further processing. This concentration is below levels measured in commercial California-style black ripe olives (0.975 mg/kg wet weight). Resins in storage brines effectively decrease levels of bitter phenolic compounds without additional lye processing. Excellent recoveries of high-value phenolic compounds are obtained from resins (e.g., 80.2 ± 3.3% to 89.4 ± 8.9% hydroxytyrosol).


Assuntos
Manipulação de Alimentos/métodos , Olea/química , Resinas Sintéticas/química , Adsorção , Manipulação de Alimentos/instrumentação , Frutas/química , Humanos , Paladar
11.
J Mass Spectrom ; 54(10): 843-855, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31509317

RESUMO

A systematic structural characterization of the isomeric forms related to ligstroside aglycone (LA), one of the most relevant secoiridoids contained in virgin olive oils, was performed using reverse phase liquid chromatography with electrospray ionization Fourier-transform single and tandem mass spectrometry, operated in negative ion mode (RPLC-ESI(-)-FTMS and FTMS/MS). The high mass resolution and accuracy provided by the adopted orbital trap mass analyzer enabled the recognition of more than 10 different isomeric forms of LA in virgin olive oil extracts. They were related to four different types of molecular structure, two of which including a dihydropyranic ring bearing one or two aldehydic groups, whereas the others corresponded to dialdehydic open-structure forms, differing just for the position of a C═C bond. The contemporary presence of enolic or dienolic tautomers associated to most of these compounds, stable at room temperature (23°C), was also assessed through RPLC-ESI-FTMS analyses operated under H/D exchange conditions, ie, by using D2 O instead of H2 O as co-solvent of acetonitrile in the RPLC mobile phase. As discussed in the paper, the results obtained for LA indicated a remarkable structural similarity with oleuropein aglycone (OA), the most abundant secoiridoid of olive oil, whose isoforms had been previously characterized using the same analytical approach.

12.
J Agric Food Chem ; 66(9): 2121-2128, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424233

RESUMO

Oleuropein, ligstroside, and related hydrolysis products are key contributors to olive bitterness, and several of these phenolics are implicated in the prevention of lifestyle age-related diseases. While table olive processing methods are designed to reduce oleuropein, the impact of processing on ligstroside and related hydrolysis products (e.g., oleacein, oleocanthal, hydroxytyrosol glucoside, ligstroside aglycone, and oleuropein aglycone) is relatively unknown. Herein, levels of these compounds were measured in Spanish-style green (SP), Californian-style black ripe (CA), and Greek-style natural fermentation (GK) olives using rapid ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS). GK olives had the highest concentration of all compounds measured, with the exception of oleocanthal, which was highest in SP olives (0.081 mg kg-1 wet weight (w.wt)). CA olives had the lowest levels of most compounds measured, including ligstroside (0.115 mg kg-1 w.wt) and oleuropein (0.974 mg kg-1 w.wt). Hydroxytyrosol was the predominate compound in all three styles of commercial olives, with similar concentrations observed for GK and SP olives (134.329 and 133.685 mg kg-1 w.wt, respectively) and significantly lower concentrations observed for CA olives (19.981 mg kg-1 w.wt).


Assuntos
Iridoides/química , Olea/química , Fenóis/química , California , Cromatografia Líquida de Alta Pressão , Fermentação , Manipulação de Alimentos , Frutas/química , Frutas/microbiologia , Grécia , Humanos , Glucosídeos Iridoides , Iridoides/metabolismo , Estrutura Molecular , Olea/microbiologia , Fenóis/metabolismo , Espanha , Espectrometria de Massas em Tandem , Paladar
13.
Food Chem ; 266: 192-199, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30381176

RESUMO

Despite the evident influence of the cultivar on olive oil composition, few studies have been devoted to exploring the variability of phenols in a representative number of monovarietal olive oils. In this study, oil samples from 80 cultivars selected for their impact on worldwide oil production were analyzed to compare their phenolic composition by using a method based on LC-MS/MS. Secoiridoid derivatives were the most concentrated phenols in virgin olive oil, showing high variability that was significantly due to the cultivar. Multivariate analysis allowed discrimination between four groups of cultivars through their phenolic profiles: (i) richer in aglycon isomers of oleuropein and ligstroside; (ii) richer in oleocanthal and oleacein; (iii) richer in flavonoids; and (iv) oils with balanced but reduced phenolic concentrations. Additionally, correlation analysis showed no linkage among aglycon isomers and oleocanthal/oleacein, which can be explained by the enzymatic pathways involved in the metabolism of both oleuropein and ligstroside.


Assuntos
Variação Biológica da População , Olea/química , Azeite de Oliva/análise , Fenóis/análise , Compostos Fitoquímicos/análise , Aldeídos/análise , Cromatografia Líquida , Monoterpenos Ciclopentânicos , Flavonoides/análise , Glucosídeos/análise , Glucosídeos Iridoides , Iridoides/análise , Análise Multivariada , Piranos/análise , Espectrometria de Massas em Tandem
14.
Food Chem ; 210: 631-9, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211691

RESUMO

Several factors affect virgin olive oil (VOO) phenolic profile. The aim of this study was to monitor olive hydrolytic (ß-glucosidase) and oxidative (peroxydase, POX, and polyphenoloxydase, PPO) enzymes during olive ripening and storage and to determine their capacity to shape VOO phenolic profile. To this end, olives from the cultivars Chétoui and Arbequina were stored at 4°C or 25°C for 4weeks and their enzymatic activities and oil phenolic profiles were compared to those of ripening olives. We observed different trends in enzymes activities according to cultivar and storage temperature. Secoiridoid compounds, determined by high resolution mass spectrometry (HRMS), and their deacetoxylated, oxygenated, and deacetoxy-oxygenated derivatives were identified and their contents differed between the cultivars according to olive ripening degree and storage conditions. These differences could be due to ß-glucosidase, POX and PPO activities changes during olive ripening and storage. Results also show that oxidised phenolic compounds could be a marker of VOO ''freshness".


Assuntos
Conservação de Alimentos/métodos , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Iridoides/análise , Olea , Azeite de Oliva/química , Catecol Oxidase/análise , Catecol Oxidase/metabolismo , Espectrometria de Massas/métodos , Oxirredução , Peroxidase/análise , Peroxidase/metabolismo , Fenóis/análise , Especificidade da Espécie , Temperatura , beta-Glucosidase/análise , beta-Glucosidase/metabolismo
15.
J Agric Food Chem ; 62(3): 600-7, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24384036

RESUMO

A previously developed method for measurement of oleocanthal and oleacein in olive oil by quantitative (1)H NMR was expanded to include the measurement of the monoaldehydic forms of oleuropein and ligstroside aglycons. The method was validated and applied to the study of 340 monovarietal Greek and Californian olive oils from 23 varieties and for a 3-year period. A wide variation concerning the concentrations of all four secoiridoids was recorded. The concentration of each one ranged from nondetectable to 711 mg/kg and the sum of the four major secoiridoids (named as D3) ranged from nondetectable to 1534 mg/kg. Examination of the NMR profile of the olive oil extract before and after contact with normal or reversed stationary chromatography phase proved the artificial formation of the 5S,8S,9S aldehydic forms of oleuropein and ligstroside aglycon isomers during chromatography. Finally, methyl elenolate was identified for the first time as a minor constituent of olive oil.


Assuntos
Glucosídeos/química , Iridoides/química , Óleos de Plantas/química , Piranos/química , Glucosídeos Iridoides , Isomerismo , Espectroscopia de Ressonância Magnética , Azeite de Oliva
16.
Artigo em Chinês | WPRIM | ID: wpr-852803

RESUMO

silica gel column chromatography, Sephadex LH-20 gel column chromatography, medium pressure column chromatography, high pressure flash chromatography, and semi-preparative HPLC, and their structures were elucidated on the basis of physico-chemical constants and spectral analysis. Results: Fourteen compounds were identified as syringin (1), 3, 4-dihydroxyphenyl ethanol (2), oleuropein (3), salidroside (4), oleoside 11-methyl ester (5), (8E)-nuezhenide (6), (8Z)-ligstroside (7), oleoacteoside (8), oleoside dimethyl ester (9), olivil-4'-O-β-D-glucoside (10), (+)-cyclo-olivil-6-O-β-D-glucoside (11), (+)-cyclo-olivil-4'-O-β-D-glucoside (12), ligstroside (13), and wilfordiol B (14). Conclusion: Compounds 2, 4, and 12-14 are obtained from this genus for the first time, and compounds 1, 3, and 5-11 are obtained from this plant for the first time.

17.
Food Chem ; 129(2): 291-296, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30634229

RESUMO

Olive mill wastewaters (OMW) are a potential source of biophenols, but they have a complex composition with many unknown phenolics. The analysis of purified methanol extracts from two Portuguese OMW by electrospray mass spectrometry in the negative mode showed [M-H]- ions at m/z 539 and m/z 523, corresponding respectively to oleuropein and ligstroside isomers which contain the glucose unit linked to its aromatic moiety. Also, the fragmentation pathway of the [M-H]- ions at m/z 863, 685 and 847 indicated the presence of a diglucoside derivative of the oleuropein isomer and of mono- and diglucosides of the ligstroside isomer, respectively. Moreover, the two OMW samples contained an elenoic derivative of the ion at m/z 685 and a degradation product (m/z 453) of the [M-H]- ion at m/z 523. Future studies focusing on the abundance of these compounds on OMW, as well as their bioactivities, will determine their possible industrial exploitation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa