Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2290-2298, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812129

RESUMO

Ligustilide is the main active component of the volatile oil from Angelica sinensis and Ligusticum chuanxiong in the Umbelliferae family. It is a phthalein compound with anti-inflammatory, analgesic, antioxidant, anti-tumor, anti-atherosclerosis, neuroprotective, and other pharmacological effects. It can improve the permeability of the blood-brain barrier and has important potential in the treatment of neurodegenerative diseases and other nervous system diseases, such as Alzheimer's disease, ischemic stroke, Parkinson's disease, vascular dementia, and depression. Therefore, the mechanism of ligustilide in the treatment of nervous system diseases was summarized to provide a reference for drug development and clinical application.


Assuntos
4-Butirolactona , Doenças do Sistema Nervoso , Humanos , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/química , Doenças do Sistema Nervoso/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Pharmacol Res ; 196: 106919, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722517

RESUMO

Community-acquired pneumonia (CAP) is one of the most common infectious diseases, and its morbidity and mortality increase with age. Resistance and mutations development make the use of anti-infective therapy challenging. Chinese patent medicines (CPMs) are often used to treat CAP in China and well tolerable. However, currently there are no evidence-based guideline for the treatment of CAP with CPMs, and the misuse of CPMs is common. Therefore, we established a guideline panel to develop this guideline. We identified six clinical questions through two rounds of survey, and we then systematically searched relevant evidence and performed meta-analyses, evidence summaries and GRADE decision tables to draft recommendations, which were then voted on by a consensus panel using the Delphi method. Finally, we developed ten recommendations based on evidence synthesis and expert consensus. For the treatment of severe CAP in adults, we recommend Tanreqing injection, Reduning injection, Xuebijing injection, Shenfu injection, and Shenmai injection respectively. For the treatment of non-severe CAP in adults, we recommend Tanreqing injection, Reduning injection, Lianhua Qingwen capsule/granule, Qingfei Xiaoyan Pill and Shufeng Jiedu capsule respectively. CPMs have great potential to help in the fight against CAP worldwide, but more high-quality studies are still needed to strengthen the evidence.

3.
Phytother Res ; 37(2): 717-730, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36216328

RESUMO

Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-ß1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-ß1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-ß1/Smad3 pathway.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Remodelação das Vias Aéreas , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Epitélio/metabolismo , Transição Epitelial-Mesenquimal , Proteína Smad3/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069368

RESUMO

Lung cancer is a malignant tumor with one of the highest morbidity and mortality rates in the world. Approximately 80-85% of lung cancer is diagnosed as non-small lung cancer (NSCLC), and its 5-year survival rate is only 21%. Cisplatin is a commonly used chemotherapy drug for the treatment of NSCLC. Its efficacy is often limited by the development of drug resistance after long-term treatment. Therefore, determining how to overcome cisplatin resistance, enhancing the sensitivity of cancer cells to cisplatin, and developing new therapeutic strategies are urgent clinical problems. Z-ligustilide is the main active ingredient of the Chinese medicine Angelica sinensis, and has anti-tumor activity. In the present study, we investigated the effect of the combination of Z-ligustilide and cisplatin (Z-ligustilide+cisplatin) on the resistance of cisplatin-resistant lung cancer cells and its mechanism of action. We found that Z-ligustilide+cisplatin decreased the cell viability, induced cell cycle arrest, and promoted the cell apoptosis of cisplatin-resistant lung cancer cells. Metabolomics combined with transcriptomics revealed that Z-ligustilide+cisplatin inhibited phospholipid synthesis by upregulating the expression of phospholipid phosphatase 1 (PLPP1). A further study showed that PLPP1 expression was positively correlated with good prognosis, whereas the knockdown of PLPP1 abolished the effects of Z-ligustilide+cisplatin on cell cycle and apoptosis. Specifically, Z-ligustilide+cisplatin inhibited the activation of protein kinase B (AKT) by reducing the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3). Z-ligustilide+cisplatin induced cell cycle arrest and promoted the cell apoptosis of cisplatin-resistant lung cancer cells by inhibiting PLPP1-mediated phospholipid synthesis. Our findings demonstrate that the combination of Z-Ligustilide and cisplatin is a promising approach to the chemotherapy of malignant tumors that are resistant to cisplatin.


Assuntos
Cisplatino , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , 4-Butirolactona/farmacologia , Fosfolipídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
5.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764479

RESUMO

Chuanxiong rhizoma (CX) has been utilized for centuries as a traditional herb to treat blood stasis syndromes. However, the pharmacological mechanisms are still not completely revealed. This research was aimed at exploring the molecular mechanisms of CX treatment for thrombosis. Network pharmacology was used to predict the potential anti-thrombosis mechanism after correlating the targets of active components with targets of thrombosis. Furthermore, we verified the mechanism of using CX to treat thrombosis via molecular docking and in vitro experiments. Network pharmacology results showed that a total of 18 active ingredients and 65 targets of CX treatment for thrombosis were collected, including 8 core compounds and 6 core targets. We revealed for the first time that tissue factor (TF) had a close relationship with most core targets of CX in the treatment of thrombosis. TF is a primary coagulation factor in physiological hemostasis and pathological thrombosis. Furthermore, core components of CX have strong affinity for core targets and TF according to molecular docking analysis. The in vitro experiments indicated that Ligustilide (LIG), the representative component of CX, could inhibit TF procoagulant activity, TF mRNA and protein over-expression in a dose-dependent manner in EA.hy926 cells through the PI3K/Akt/NF-κB signaling pathway. This work demonstrated that hemostasis or blood coagulation was one of the important biological processes in the treatment of thrombosis with CX, and TF also might be a central target of CX when used for treating thrombosis. The inhibition of TF might be a novel mechanism of CX in the treatment of thrombosis.


Assuntos
Farmacologia em Rede , Trombose , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Trombose/tratamento farmacológico , Coagulação Sanguínea
6.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3046-3054, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381963

RESUMO

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Assuntos
Ferroptose , Animais , Ratos , Células PC12 , Ferroptose/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição , Glutationa
7.
Metab Brain Dis ; 37(5): 1401-1414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420377

RESUMO

Vascular dementia (VaD) is the second cause of dementia after Alzheimer's disease. Ligustilide (LIG) is one of the main active ingredients of traditional Chinese medicines, such as Angelica. Studies have reported that LIG could protect against VaD. However, the mechanism is still confused. In this study, we employed a bilateral common carotid artery occlusion rat model to study. LIG (20 or 40 mg/kg/day) and Nimodipine (20 mg/kg) were orally administered to the VaD rats for four weeks. Morris water maze test showed that LIG effectively ameliorated learning and memory impairment in VaD rats. LIG obviously reduced neuronal oxidative stress damage and the level of homocysteine in the brain of VaD rats. Western blot results showed that pro-apoptotic protein Bax and cleaved caspase 3 increased and anti-apoptotic protein Bcl-2 decreased in the hippocampi of VaD rats. But after LIG treatment, these changes were reversed. Moreover, Nissl staining result showed that LIG could reduce neuronal degeneration in VaD rats. Furthermore, LIG enhanced the expressions of P-AMPK and Sirtuin1(SIRT1) in VaD rats. In conclusion, these studies indicated that LIG could ameliorate cognitive impairment in VaD rats, which might be related to AMPK/SIRT1 pathway activation.


Assuntos
Disfunção Cognitiva , Demência Vascular , 4-Butirolactona/análogos & derivados , Proteínas Quinases Ativadas por AMP , Animais , Disfunção Cognitiva/tratamento farmacológico , Demência Vascular/tratamento farmacológico , Modelos Animais de Doenças , Aprendizagem em Labirinto , Ratos , Sirtuína 1
8.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292928

RESUMO

Angelicae tenussimae root has been used as a traditional medicine in Asia. Recently, anti-melanogenic and anti-photogenic effects of fermented A. tenuissima root (FAT) were identified. However, information about the anti-atopic dermatitis action of FAT is limited. Thus, the purpose of this study is to determine the applicability of FAT to AD by identifying the efficacy of FAT on the skin barrier and inflammatory response, which are the main pathogenesis of AD. Expression levels of skin barrier components and the production of inflammatory mediators in human keratinocyte and mouse macrophage cells were measured by quantitative RT-PCR or ELISA. FAT upregulated the expression of skin barrier components (filaggrin, involucrin, loricurin, SPTLC1) and inhibited the secretion of an inflammatory chemokine TARC in HaCaT cells. Furthermore, it suppressed pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide production in LPS-induced RAW264.7 cells. In addition, ligustilide increased filaggrin and SPTLC1, and also lowered pro-inflammatory mediators that increased in atopic environments, such as in FAT results. This means that ligustilide, one of the active ingredients derived from FAT, can ameliorate AD, at least in part, by promoting skin barrier formation and downregulating inflammatory mediators. These results suggest that FAT is a potential functional cosmetic material for the care and management of AD.


Assuntos
Aspergillus oryzae , Fator de Necrose Tumoral alfa , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Pele/metabolismo
9.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889462

RESUMO

The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.


Assuntos
Medicamentos de Ervas Chinesas , Ligusticum , Antifúngicos/farmacologia , Botrytis , Medicamentos de Ervas Chinesas/química , Ligusticum/química
10.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1897-1903, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35534260

RESUMO

Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.


Assuntos
Mitofagia , Traumatismo por Reperfusão , 4-Butirolactona/análogos & derivados , Apoptose , Cálcio/farmacologia , Glucose/metabolismo , Humanos , Proteínas Mitocondriais , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética
11.
Eur J Neurosci ; 54(3): 5000-5015, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192824

RESUMO

Ligustilide exerts potential neuroprotective effects against various cerebral ischaemic insults and neurodegenerative disorders. However, the function and mechanisms of LIG-mediated hippocampal neural stem cells (H-NSCs) activation as well as cognitive recovery in the context of post-operative cognitive dysfunction (POCD) remain elusive and need to be explored. Mice were subjected to transient global cerebral ischaemia and reperfusion (tGCI/R) injury and treated with LIG (80 mg/kg) or vehicle for 1 month. Morris water maze test and western blot were employed to assess cognitive function. Nissl staining and immunofluorescence (IF) staining were used to detect H-NSCs proliferation and neurogenesis in hippocampus. Subsequently, primary H-NSCs were treated with LIG, and the level of H-NSCs proliferation and neuronal-differentiation was examined by IF staining for Edu and ß-Tubulin III. The protein levels of ERK1/2, ß-catenin, NICD, TLR4, Akt and FoxO1 were examined using western blotting. Finally, pretreatment with the ERK agonist SCH772984 was performed to observe the change in ERK expression. LIG treatment promoted H-NSCs proliferation and neurogenesis, increased the number of neurons in the hippocampal subfields, and ultimately reversed cognitive impairment in tGCI/R injury. Furthermore, LIG also promoted primary H-NSCs proliferation and neuronal-differentiation, as well as ERK1/2 phosphorylation. Pretreatment with SCH772984 effectively reversed the ability of LIG to induce ERK1/2 phosphorylation and promote H-NSCs proliferation and neuronal-differentiation. LIG can promote cognitive recovery after tGCI/R injury by activating ERK1/2 in H-NSCs to promote their proliferation and neurogenesis in the hippocampus. Therefore, LIG has potential for use in the prevention and/or treatment of POCD.


Assuntos
Células-Tronco Neurais , Complicações Cognitivas Pós-Operatórias , 4-Butirolactona/análogos & derivados , Animais , Proliferação de Células , Cognição , Hipocampo , Camundongos , Neurogênese
12.
J Recept Signal Transduct Res ; 41(1): 85-92, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32643505

RESUMO

BACKGROUND: Diabetes mellitus (DM) is one of the major risk factors of disability and death worldwide. Despite of the protective role of ligustilide (LIG) in many cell types, we aimed to investigate whether LIG could be a potential to treat DM. METHODS: Sprague Dawley rats were randomly assigned to five groups. Rats except control were raised on a high-fat diet (HFD). Streptozotocin was intraperitoneally injected into HFD-fed rats to construct DM model. Rats in the LIG intervention groups received intraperitoneal injection of LIG (10, 20, and 40 mg/kg) post-induction of DM. Blood glucose, plasma insulin (p-insulin), adiponectin, HbA1C%, obesity index, HOMA-IR, and biochemical parameters were estimated. Histopathological analysis and apoptosis in liver and kidney, along with proliferation and apoptosis of islet ß-cells, were analyzed. Expression of CPT-1 and ACC, and phosphorylation of Nrf2 and AMPKα1, were finally assessed. RESULTS: DM-induced alterations were all relived by LIG intervention. In brief, obesity index, glucose level, P-insulin content, HbA1C, and HOMA-IR were lowered while adiponectin level was elevated. Meanwhile, levels of TC, TG, ALT, and AST were decreased in the LIG intervention groups, along with up-regulated CPT-1 level and down-regulated ACC level. Pathological changes in liver and kidney tissues were alleviated, and apoptotic cells were reduced by LIG treatment. For islet ß-cells, LIG up-regulated Ki67 and c-Myc expression, and mitigated ratios of Bax/Bcl-2 and cleaved cas3(9)/cas3(9). Finally, LIG could promote phosphorylation of Nrf2 and AMPKα1. CONCLUSIONS: LIG alleviated the insulin resistance, lipid accumulation, and pathological injury with the activation of AMPK pathway in DM rats.


Assuntos
4-Butirolactona/análogos & derivados , Diabetes Mellitus/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Obesidade/tratamento farmacológico , Proteínas Quinases/genética , 4-Butirolactona/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Obesidade/genética , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Ratos
13.
Toxicol Appl Pharmacol ; 410: 115336, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212065

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related death worldwide. The abnormal activation of glycolytic metabolism and PTEN/AKT signaling in NSCLC cells are highly correlated with their proliferation abilities and viability. Ligustilide is one of the major bioactive components of multiple Chinese traditional medicine including Angelica sinensis and Ligusticum. Ligustilide exposure inhibits the proliferation and viability of multiple cancer cell lines in vitro. However, the impact of ligustilide to the progression of NSCLC and its detailed pharmacological mechanisms remain unclear. In this research, CCK-8 and colony formation assay were performed to demonstrate ligustilide treatment inhibited the viability and proliferation ability of NSCLC cells in vitro. Caspase-3/-7 activity assay and nucleosome ELISA assay were utilized to show ligustilide promoted the apoptosis of NSCLC cells. Metabolic analysis and qRT-PCR assay were used to demonstrated that ligustilide dampened aerobic glycolysis of NSCLC cells. Nude mice were exposed to 5 mg/kg ligustilide and ligustilide inhibited orthotopic NSCLC growth in vivo. qRT-PCR and Western blot analysis were performed to substantiate the regulatory function of ligustilide to PTEN/AKT signaling in NSCLC cells. Overall, this study revealed that ligustilide regulated the proliferation, apoptosis and aerobic glycolysis of NSCLC cells through PTEN/AKT signaling pathway.


Assuntos
4-Butirolactona/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Células A549 , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Glicólise/fisiologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Distribuição Aleatória
14.
Cell Biol Toxicol ; 37(1): 113-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130971

RESUMO

Inflammatory bowel disease (IBD) is a chronic idiopathic disorder causing inflammation in the gastro-intestinal tract, which is lack of effective drug targets and medications. To identify novel therapeutic agents against consistent targets, we exploited a systems pharmacology-driven framework that incorporates drug-target networks of natural product and IBD disease genes. Our in silico approach found that Ligustilide (LIG), one of the major active components of Angelica acutiloba and Cnidium Officinale, potently attenuated IBD. The following in vivo and in vitro results demonstrated that LIG prevented experimental mice colitis induced by dextran sulfate sodium (DSS) via suppressing inflammatory cell infiltration, the activity of MPO and iNOS, and the expression and production of IL-1ß, IL-6, and TNF-α. Subsequently, the network analysis helped to validate that LIG alleviated colitis by inhibiting NF-κB and MAPK/AP-1 pathway through activating PPARγ, which were further confirmed in RAW 264.7 cells and bone marrow-derived macrophages in vitro. In summary, this study reveals that LIG activated PPARγ to inhibit the activation of NF-κB and AP-1 signaling thus eventually alleviated DSS-induced colitis, which has promising activities and may serve as a candidate for the treatment of IBD.Graphical abstract This study suggested novel computational and experimental pharmacology approaches to identify potential IBD therapeutic agents by exploiting polypharmacology of natural products. We demonstrated that LIG could attenuate inflammation in IBD by inhibiting NF-κB and AP-1 pathways via PPARγ activation to reduce the expression of pro-inflammatory cytokines in macrophages. These findings offer comprehensive pre-clinical evidence that LIG may serve as a promising candidate for IBD therapy in the future. Graphical headlights: 1. Systems pharmacology uncovered Ligustilide attenuates experimental colitis in mice. 2. Network-based analysis predicted the mechanism of Ligustilide against IBD, which was validated by inhibiting PPARγ-mediated inflammation pathways. 3. Ligustilide activated PPARγ to inhibit NF-κB and AP-1 activation thus eventually alleviated DSS-induced colitis.4. Ligustilide has promising activities and may serve as a candidate for the treatment of IBD.


Assuntos
4-Butirolactona/análogos & derivados , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/patologia , Farmacologia em Rede , PPAR gama/metabolismo , Transdução de Sinais , 4-Butirolactona/química , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Produtos Biológicos/farmacologia , Colite/complicações , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Feminino , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
15.
Phytother Res ; 35(3): 1572-1584, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111362

RESUMO

Ligustilide is a phenolic compound isolated from Asian plants of Umbelliferae family. This study was aimed at exploring the neuroprotective effects of Ligustilide from the perspective of endoplasmic reticulum stress (ERS) and autophagy. The Alzheimer's disease (AD) cell models were constructed by SH-SY5Y cell line, which was exposed to 20 µM Aß25-35 . CCK-8 was used to evaluate the cell viability of Ligustilide on AD cell model. Hoechst staining and LysoTracker Red were used to test the cell apoptosis and Lysosome function, respectively. ERS in living cells were detected by Thioflavin T. The expression of autophagy-related proteins (LC3B-II/I, P62/SQSTM1, Beclin1, and Atg5), ERS marker proteins (PERK, GRP78, and CHOH), and apoptosis proteins (Bax, Bcl-2, and Caspase-12) were analyzed by Western blot analyses. Aß25-35 could induce ERS and autophagy in a time-dependent manner in SH-SY5Y cells. We demonstrated that Ligustilide significantly decreased the rate of apoptosis, and improved the viability of cells. Simultaneously, Ligustilide effectively modulated ERS via inhibiting the over-activation of GRP78/PERK/CHOP signaling pathway. In addition, Ligustilide alleviated the accumulation of autophagy vacuoles, reduced the ratio of LC3B-II/I and the level of P62/SQSTM1. Ligustilide significantly up-regulated lysosomal acidity and the expression of Cathepsin D (CTSD). Ligustilide could rescue lysosomal function to promote autophagy flux and inhibit the over-activation of ERS. This finding may contribute to the development of new therapeutic strategies for AD.


Assuntos
4-Butirolactona/análogos & derivados , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Apoptose , Chaperona BiP do Retículo Endoplasmático , Humanos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Transfecção
16.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6196-6203, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951246

RESUMO

A HPLC method was established for simultaneous determination of two organic acids(chlorogenic acid and ferulic acid) and five phthalides(senkyunolide I, senkyunolide H, senkyunolide A, ligustilide, and butylidenephthalide) in Angelicae Sinensis Radix and its processed products to clarify the underlying material transferring rules. The analysis was performed on a Welch Ultimate C_8 column(4.6 mm×250 mm, 5 µm) with acetonitrile(A)-0.085% phosphoric acid water(B) as the mobile phase in a gradient elution mode at the flow rate of 1.1 mL·min~(-1), the column temperature of 25 ℃, the detection wavelength of 280 nm, and the injection volume of 10 µL. Under these conditions, the content of the above-mentioned seven components was analyzed in 15 batches of Angelicae Sinensis Radix and its processed products, and the transfer rate of each compound was calculated. As a result, in the processed products, the average content of chlorogenic acid was slightly decreased and that of ferulic acid was equivalent to the medicinal materials. The content of senkyunolide I, senkyunolide H, senkyunolide A, and butylidenephthalide showed an increasing trend in the processed products as compared with the medicinal materials. The mass fraction of ligustilide in the medicinal materials was above 0.7%(0.94% on average), meeting the requirement of 0.6% in the Hong Kong Chinese Materia Medica Standards, but was 0.47% on average in the processed products, which was decreased by 50% approximately. Further investigation showed that the content of ligustilide in freshly made processed products of Angelicae Sinensis Radix did not change significantly compared with that in the medicinal materials, indicating that the loss of ligustilide in the processed products mainly occurred in the storage. Therefore, Angelicae Sinensis Radix is suitable for storing in the form of medicinal materials and the freshly made processed products should be used except for special cases. Additionally, it is recommended to control the content of volatile oils or ligustilide in medicinal materials and processed products of Angelicae Sinensis Radix to ensure its effectiveness in clinical medication.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Ácido Clorogênico , Cromatografia Líquida de Alta Pressão , Raízes de Plantas
17.
Zhongguo Zhong Yao Za Zhi ; 46(4): 972-980, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645104

RESUMO

This study aims to establish a method for the determination of the concentration of five main components of phthalide target areas of Chaxiong(CPTA) and its inclusion of ß-CD in the plasma of rats, and determine the pharmacokinetic parameters, absolute bioavailability and relative bioavailability of CPTA/ß-CD inclusion compound in vivo. The plasma concentrations of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide were determined with UPLC-MS/MS. The content determination was conducted at the chromatographic conditions as follows: Shim-pack GIST C_(18)-AQ HP column(2.1 mm×100 mm, 3 µm), mobile phase of 0.1% formic acid solution(A)-acetonitrile(B), gradient elution, flow rate of 0.3 mL·min~(-1), column temperature of 35 ℃ and injection volume of 2 µL. The mass spectra were obtained with electrospray ion source(ESI), positive ion mode and multi reaction monitoring. CPTA/ß-CD inclusion compound was prepared by grinding method, DAS 2.0 software was used to model the data, and the absolute bioavailability of CPTA and relative bioavailability of inclusion compound were calculated. Finally, the methods for the determination of five components of senkyunolide A, N-butylphthalide, new osthol lactone, Z-ligustilide and butenyl phthalide in CPTA, were successfully established. The linear relationship among the five components was good within their respective ranges, r>0.99. The absolute bioavailability of the five components in rats was 22.30%, 16.32%, 21.90%, 10.16% and 12.43%, respectively. After CPTA/ß-CD inclusion was prepared, the relative bioavailability of the five components was 138.69%, 198.39%, 218.01%, 224.54% and 363.55%, respectively, significantly improved. This method is rapid, accurate and sensitive, so it is suitable for the pharmacokinetic study of extracts in traditional Chinese medicine and their preparations.


Assuntos
Espectrometria de Massas em Tandem , Animais , Benzofuranos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
18.
Pharmacol Res ; 159: 104795, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32278035

RESUMO

Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Mucosa Nasal/metabolismo , Preparações de Plantas/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Administração Intranasal , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Composição de Medicamentos , Humanos , Preparações de Plantas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Distribuição Tecidual
19.
J Sep Sci ; 43(24): 4405-4413, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33098237

RESUMO

Ligustilide is one of the most abundant bioactive ingredients in Rhizoma Chuanxiong that has been widely prescribed for medicinal purposes in China. To better understand the disposition and action of ligustilide, it is necessary to investigate the metabolic profiles. The in vitro metabolism was elucidated through incubating ligustilide with human and rat hepatocytes at 37°C. The incubation samples were collected at predefined time points to determine the metabolic stability. Upon metabolite identification and profiling, the incubation samples were analyzed by ultra-high-performance liquid chromatography combined with diode array detector and high-resolution mass spectrometry. The structures of the metabolites were characterized based on their mass spectrometry spectra, tandem mass spectrometry spectra, and fragmentation patterns. Ligustilide showed fast metabolism with high intrinsic clearance both in rat and human hepatocyte incubations. The half-lives of ligustilide in rat and human hepatocyte incubations were 8.0 and 15.0 min, respectively. Most of the parent (>90%) was biotransformed into the metabolites. Among these metabolites, M1 (senkyunolide I) was the major metabolite both in rat and human hepatocytes with the percentage of 42 and 70%, respectively. The metabolic pathways of ligustilide included epoxidation, epoxide hydrolysis, aromatization, hydroxylation, and glutathionylation. This work provided an overview of the metabolic profiles of ligustilide, which would be helpful for us to understand the action of this compound.


Assuntos
4-Butirolactona/análogos & derivados , Hepatócitos/química , 4-Butirolactona/análise , 4-Butirolactona/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Hepatócitos/metabolismo , Humanos , Espectrometria de Massas , Ratos
20.
Phytother Res ; 34(8): 1966-1991, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32135035

RESUMO

Z-ligustilide is a natural benzoquinone derivative found in many widely used Chinese herbal medicines such as Angelica sinensis (Oliv.) Diels as well as Ligusticum chuanxiong Hort and so on. It has been used as a part of traditional Chinese medicine and is also present in various Chinese medicine preparations. Pharmacokinetic studies have shown that Z-ligustilide has poor oral bioavailability in rats due to severe first-pass metabolic reactions. New evidence suggests that Z-ligustilide has a wide range of pharmacological properties, including anticancer, antiinflammatory, anti-oxidant as well as neuroprotective activities and so on. The literature discussed is derived from readily accessible papers spanning the early 1970s to the end of March 2019. Information were collected from journals, books, and online searches (Google Scholar, PubMed, Science Direct, Science Citation Index Finder, Springer link, and CNKI). This review intends to provide a comprehensive overview of the pharmacokinetics and pharmacology of Z-ligustilide in recent years, with a focus on its biological properties and mechanisms, which is of great significance for Chinese medicine.


Assuntos
4-Butirolactona/análogos & derivados , Medicamentos de Ervas Chinesas/uso terapêutico , 4-Butirolactona/farmacocinética , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Estrutura Molecular , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa