Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Bioorg Chem ; 142: 106961, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956636

RESUMO

A series of novel NBP-TMP hybrids with neuroprotective effects were designed and synthesized for the treatment of ischemic stroke. The anti-cerebral ischemic activity of these compounds was screened by evaluating their neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cell injury model in vitro. Nine compounds 7e, 7h-7i, 7k, 7m-7p and 7r showed better activities on cell viability and LDH levels compared to NBP at the concentration of 6.25 µM. Among them, compound 7m showed the best potency with a percentage of protection 90.2 % compared to NBP (69.2 %) and other compounds. Preliminary structure-activity analysis revealed that the introduction of iodine and N-methylpiperazine groups could significantly improve the neuroprotective effect. Further mechanism research showed that compound 7m could reduce the damage to neuronal mitochondria caused by OGD/R by reducing ROS and increasing mitochondrial membrane potential (MMP), and reduce the apoptosis and necrosis of neurons to play a neuroprotective role. In addition, 7m could regulate the levels of mitochondrial apoptosis pathway-related proteins Bcl-2, Bax, and caspase 3. Finally, in vivo experiments showed that the compound 7m significantly inhibited ischemia-reperfusion injury and cerebral blood flow in rats, and showed a more significant neuroprotective effect than the positive drug NBP at a dose concentration of 20 mg/kg. In conclusion, our results suggest that 7m may be used as a novel lead compound for the future development of anti-cerebral ischemic agents.


Assuntos
AVC Isquêmico , Neuroblastoma , Fármacos Neuroprotetores , Ratos , Humanos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Apoptose , Oxigênio/metabolismo , Glucose/metabolismo
2.
J Nanobiotechnology ; 22(1): 14, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166847

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a highly debilitating and fatal chronic lung disease that is difficult to cure clinically. IPF is characterized by a gradual decline in lung function, which leads to respiratory failure and severely affects patient quality of life and survival. Oxidative stress and chronic inflammation are believed to be important pathological mechanisms underlying the onset and progression of IPF, and the vicious cycle of NOX4-derived ROS, NLRP3 inflammasome activation, and p38 MAPK in pulmonary fibrogenesis explains the ineffectiveness of single-target or single-drug interventions. In this study, we combined astragaloside IV (AS-IV) and ligustrazine (LIG) based on the fundamental theory of traditional Chinese medicine (TCM) of "tonifying qi and activating blood" and loaded these drugs onto nanoparticles (AS_LIG@PPGC NPs) that were inhalable and could penetrate the mucosal barrier. Our results suggested that inhalation of AS_LIG@PPGC NPs significantly improved bleomycin-induced lung injury and fibrosis by regulating the NOX4-ROS-p38 MAPK and NOX4-NLRP3 pathways to treat and prevent IPF. This study not only demonstrated the superiority, feasibility, and safety of inhalation therapy for IPF intervention but also confirmed that breaking the vicious cycle of ROS and the NLRP3 inflammasome is a promising strategy for the successful treatment of IPF. Moreover, this successful nanoplatform is a good example of the integration of TCM and modern medicine.


Assuntos
Fibrose Pulmonar Idiopática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Medicina Tradicional Chinesa , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Qualidade de Vida , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fibrose , Inflamação/patologia , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792070

RESUMO

Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.


Assuntos
Cristalização , Pirazinas , Molhabilidade , Pirazinas/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Cristalografia por Raios X , Estrutura Molecular , Difração de Raios X
4.
J Med Virol ; 95(7): e28968, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489704

RESUMO

Influenza viruses pose a significant threat to human health worldwide due to seasonal epidemics and occasional global pandemics. These viruses can cause severe upper respiratory tract infections that contribute to high morbidity and mortality rates. The emergence of drug-resistant influenza viruses has created the need for the development of novel broad-spectrum antivirals. Here, we present a novel anti-influenza agent with new targets and mechanisms of action to address this problem. Our findings led to the discovery of a novel influenza virus inhibitor, a ligustrazine derivative known as A9. We have found that it exhibits broad-spectrum antiviral properties against influenza A and B viruses (IAV and IBV, respectively), including oseltamivir-resistant strain. Through multiple bioassays such as time-of-addition assay, indirect immunofluorescence assay, and nuclear-cytoplasmic fractionation assay, we demonstrated that A9 inhibits the nuclear export of the viral ribonucleoprotein (vRNP). Furthermore, escape mutant analyses and affinity studies determined by surface plasmon resonance indicated that A9 specifically targets the nucleoprotein. In addition, four chalcone derivatives developed from A9 (B14, B29, B31, and B32), were found to effectively inhibit the replication of influenza virus through the same mechanism of action. In this manuscript we highlight A9 and its four derivatives as potential leads for the treatment of IAV and IBV infections, and their unique and novel mechanism of action probable benefit the field of anti-influenza drug discovery.


Assuntos
Chalcona , Chalconas , Influenza Humana , Orthomyxoviridae , Humanos , Nucleoproteínas , Transporte Ativo do Núcleo Celular , Antivirais
5.
Arch Biochem Biophys ; 737: 109522, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657605

RESUMO

OBJECTIVE: Preeclampsia (PE) is a pregnancy-specific syndrome. Ligustrazine (LSZ) is involved in hypoxia/reoxygenation (H/R)-treated trophoblast cell regulation, but its mechanism remains elusive. This study explored the mechanism of LSZ in H/R-treated trophoblast cells to provide a theoretical basis for the new treatment method development for PE. METHODS: H/R HTR8/SVneo cell model was established for PE simulation to some extent. Trophoblast cell proliferation, apoptosis rate, migration, and invasion were detected by MTT assay, flow cytometry, scratch test, and Transwell assay. miR-27a-3p expression in trophoblast cells was detected by RT-qPCR. Binding sites between miR-27a-3p and ATF3 were predicted using Starbase and verified by dual-luciferase reporter assay. Activating transcription factor 3 (ATF3), ß-catenin, Cyclin D1, and c-Myc protein levels were examined using Western blot. After LSZ treatment, H/R-induced HTR8/SVneo cells were delivered with miR-27a-3p mimic or ATF3 siRNA to verify their roles in HTR8/SVneo cells. RESULTS: LSZ facilitated the proliferation, migration, and invasion of trophoblast cells and inhibited apoptosis. miR-27a-3p was elevated in H/R-induced HTR8/SVneo cells and miR-27a-3p overexpression annulled the effect of LSZ on trophoblast cells. miR-27a-3p targeted ATF3. ATF3 silencing averted the property of LSZ on trophoblast cells. Wnt/ß-catenin pathway-related proteins were repressed in H/R-induced HTR8/SVneo cells, and LSZ activated the Wnt/ß-catenin pathway by promoting ATF3 expression. CONCLUSION: LSZ mediated the Wnt pathway by regulating the miR-27a-3p/ATF3 axis, thus promoting the proliferation and migration of trophoblast cells. The protective mechanism of LSZ showed the potential application value in the treatment of PE.


Assuntos
MicroRNAs , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , beta Catenina/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , MicroRNAs/metabolismo , Proteínas Wnt/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proliferação de Células/genética , Hipóxia/metabolismo , Movimento Celular/genética
6.
Bioorg Chem ; 131: 106337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603244

RESUMO

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Assuntos
Antibacterianos , Arginina , Desenho de Fármacos , Ácido Glicirretínico , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Arginina/biossíntese , Escherichia coli/efeitos dos fármacos , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo
7.
Clin Exp Pharmacol Physiol ; 50(11): 867-877, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574718

RESUMO

Preventing or treating heart failure (HF) by blocking cardiomyocyte apoptosis is an effective strategy that improves survival and reduces ventricular remodelling and dysfunction in the chronic stage. Autophagy is a mechanism that degrades intracellular components and compensates for energy deficiency, which is commonly observed in cardiomyocytes of failed hearts. Cardiomyocytes activated by doxorubicin (DOX) exhibit strong autophagy. This study aims to investigate the potential protective effect of ligustrazine and its derivative liguzinediol on regulating DOX-induced cardiomyocyte apoptosis and explore the use of the embryonic rat heart-derived myoblast cell line H9C2 for identifying novel treatments for HF. The results indicated that it has been demonstrated to reverse myocardial infarction remodelling in failed hearts by promoting autophagy in salvaged cardiomyocytes and anti-apoptosis of cardiomyocytes in granulation tissue. Our study suggests that ligustrazine and liguzinediol can be a promising agents and autophagy is potential pathway in the management of HF.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Animais , Doxorrubicina/farmacologia , Insuficiência Cardíaca/metabolismo , Apoptose , Autofagia
8.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110589

RESUMO

Antiplatelet aggregation agents have demonstrated clinical benefits in the treatment of ischemic stroke. In our study, a series of novel nitric oxide (NO)-donating ligustrazine derivatives were designed and synthesized as antiplatelet aggregation agents. They were evaluated for the inhibitory effect on 5'-diphosphate (ADP)-induced and arachidonic acid (AA)-induced platelet aggregation in vitro. The results showed that compound 15d displayed the best activity in both ADP-induced and AA-induced assays, and compound 14a also showed quite better activity than ligustrazine. The preliminary structure-activity relationships of these novel NO-donating ligustrazine derivatives were discussed. Moreover, these compounds were docked with the thromboxane A2 receptor to study the structure-activity relationships. These results suggested that the novel NO-donating ligustrazine derivatives 14a and 15d deserve further study as potent antiplatelet aggregation agents.


Assuntos
Óxido Nítrico , Inibidores da Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Óxido Nítrico/farmacologia , Agregação Plaquetária , Pirazinas/farmacologia , Relação Estrutura-Atividade , Ácido Araquidônico/farmacologia
9.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375205

RESUMO

Current medication therapy for leishmaniasis and trypanosomiasis remains a major challenge due to its limited efficacy, significant adverse effects, and inaccessibility. Consequently, locating affordable and effective medications is a pressing concern. Because of their easy-to-understand structure and high functionalization potential, chalcones are promising candidates for use as bioactive agents. Thirteen synthetic ligustrazine-containing chalcones were evaluated for their ability to inhibit the growth of leishmaniasis and trypanosomiasis in etiologic agents. The tetramethylpyrazine (TMP) analogue ligustrazine was chosen as the central moiety for the synthesis of these chalcone compounds. The most effective compound (EC50 = 2.59 µM) was the chalcone derivative 2c, which featured a pyrazin-2-yl amino on the ketone ring and a methyl substitution. Multiple actions were observed for certain derivatives, including 1c, 2a-c, 4b, and 5b, against all strains tested. Eflornithine served as a positive control, and three ligustrazine-based chalcone derivatives, including 1c, 2c, and 4b, had a higher relative potency. Compounds 1c and 2c are particularly efficacious; even more potent than the positive control, they are therefore promising candidates for the treatment of trypanosomiasis and leishmaniasis.


Assuntos
Chalcona , Chalconas , Leishmania , Leishmaniose , Trypanosoma brucei brucei , Tripanossomíase , Humanos , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/química , Tripanossomíase/tratamento farmacológico , Leishmaniose/tratamento farmacológico
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 751-758, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37529959

RESUMO

OBJECTIVES: To study the effect of ligustrazine injection on mitophagy in neonatal rats with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism. METHODS: Neonatal Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group with 8 rats, a model group with 12 rats, and a ligustrazine group with 12 rats. The rats in the model group and the ligustrazine group were used to establish a neonatal rat model of HIE by ligation of the left common carotid artery followed by hypoxia treatment, and blood vessels were exposed without any other treatment for the rats in the sham-operation group. The rats in the ligustrazine group were intraperitoneally injected with ligustrazine (20 mg/kg) daily after hypoxia-ischemia, and those in the sham-operation group and the model group were intraperitoneally injected with an equal volume of normal saline daily. Samples were collected after 7 days of treatment. Hematoxylin and eosin staining and Nissl staining were used to observe the pathological changes of neurons in brain tissue; immunohistochemical staining was used to observe the positive expression of PINK1 and Parkin in the hippocampus and cortex; TUNEL staining was used to measure neuronal apoptosis; Western blotting was used to measure the expression levels of the mitophagy pathway proteins PINK1 and Parkin and the autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and ubiquitin-binding protein (P62). RESULTS: Compared with the sham-operation group, the model group had a significant reduction in the number of neurons, an increase in intercellular space, loose arrangement, lipid vacuolization, and a reduction in Nissl bodies. The increased positive expression of PINK1 and Parkin, apoptosis rate of neurons, and protein expression levels of PINK1, Parkin, Beclin1 and LC3 (P<0.05) and the decreased protein expression level of P62 in the hippocampus were also observed in the model group (P<0.05). Compared with the model group, the ligustrazine group had a significant increase in the number of neurons with ordered arrangement and an increase in Nissl bodies, significant reductions in the positive expression of PINK1 and Parkin, the apoptosis rate of neurons, and the protein expression levels of PINK1, Parkin, Beclin1, and LC3 (P<0.05), and a significant increase in the protein expression level of P62 (P<0.05). CONCLUSIONS: Ligustrazine can alleviate hypoxic-ischemic brain damage and inhibit neuronal apoptosis in neonatal rats to a certain extent, possibly by inhibiting PINK1/Parkin-mediated autophagy.


Assuntos
Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Proteína Beclina-1 , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
11.
Vascular ; 30(6): 1224-1231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34670463

RESUMO

OBJECTIVE: The purpose of this study was to explore the role of ligustrazine in vascular calcification. METHODS: After ß-GP stimulation, vascular smooth muscle cells (VSMCs) were detected by Alizarin Red Staing staining. Calcium content and alkaline phosphatase (ALP) activity were detected by intracellular calcium assay kit and ALP assay kit, respectively. The expression of peroxisome proliferation-activated receptor (PPAR-γ) pathway-related proteins was detected by Western blot. PPAR-γ, MSX2, osteopontin (OPN), sclerostin, and BGP were detected by RT-PCR. RESULTS: ß-GP induced the decreased activity and expression of PPAR-γ and ALP in VSMCs, while ligustrazine activated the expression of PPAR-γ. Through activation of PPAR-γ, ligustrazine decreased ß-GP-induced VSMC calcification, decreased the expression of markers of osteogenesis and chondrogenic differentiation, and increased the expression of VSMC markers. CONCLUSION: Ligustrazine activates the PPAR-γ pathway and plays a protective role in vascular calcification.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Cálcio/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6348-6354, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604879

RESUMO

The present study investigated the effects of ligustrazine hydrochloride(LH)-Salviae Miltiorrhizae Radix et Rhizoma(SM) before and after compatibility on the pharmacokinetics of acute myocardial ischemia(AMI) rats and revealed the mechanism of pharmacokinetic changes from the perspective of metabolic enzymes. AMI rats underwent single injection of SM Glucose Injection, LH Glucose Injection, and LH-SM Glucose Injection in the caudal vein, respectively(3.78 mg·kg~(-1) salvianic acid, 0.049 mg·kg~(-1) rosmarinic acid, and 13.68 mg·kg~(-1) ligustrazine). Blood samples were collected from the orbital venous plexus at different time points, and the liver of the rats was removed after the last blood sampling. The plasma concentrations of salvianic acid, rosmarinic acid, and ligustrazine were detected by UPLC-MS/MS. Western blot was used to detect the protein expression of CYP1 A2, CYP2 C11, CYP2 C19, CYP2 D4, CYP2 E1, and CYP3 A2 in the liver of rats in each group. As revealed by the pharmacokinetic results, compared with the LH Glucose Injection group, the LH-SM Glucose Injection group showed a downward trend of T_(1/2) of ligustrazine in AMI rats and decreased AUC(P<0.05). Compared with the SM Glucose Injection, there were no significant differences in the pharmacokinetic parameters of salvianic acid and rosmarinic acid in the LH-SM Glucose Injection group. Protein expression results showed that the expression levels of CYP1 A2, CYP2 C11, CYP2 D4, CYP2 E1, and CYP3 A2 in the LH-SM Glucose Injection group increased(P<0.05) and the expression level of CYP2 C19 decreased(P<0.05) compared with those in the LH Glucose Injection group. CYP1 A2, CYP2 C11, and CYP3 A2 are isoenzymes involved in ligustrazine Ⅰ metabolism. When LH and SM were used in combination, the expression of these three enzymes increased, which changed the pharmacokinetic process in rats and accelerated the metabolism of ligustrazine.


Assuntos
Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Ratos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema Enzimático do Citocromo P-450 , Ácido Rosmarínico
13.
Pharmacol Res ; 168: 105599, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838291

RESUMO

Atherosclerosis, a chronic multifactorial disease, is closely related to the development of cardiovascular diseases and is one of the predominant causes of death worldwide. Normal vascular endothelial cells play an important role in maintaining vascular homeostasis and inhibiting atherosclerosis by regulating vascular tension, preventing thrombosis and regulating inflammation. Currently, accumulating evidence has revealed that endothelial cell apoptosis is the first step of atherosclerosis. Excess apoptosis of endothelial cells induced by risk factors for atherosclerosis is a preliminary event in atherosclerosis development and might be a target for preventing and treating atherosclerosis. Interestingly, accumulating evidence shows that natural medicines have great potential to treat atherosclerosis by inhibiting endothelial cell apoptosis. Therefore, this paper reviewed current studies on the inhibitory effect of natural medicines on endothelial cell apoptosis and summarized the risk factors that may induce endothelial cell apoptosis, including oxidized low-density lipoprotein (ox-LDL), reactive oxygen species (ROS), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α), homocysteine (Hcy) and lipopolysaccharide (LPS). We expect this review to highlight the importance of natural medicines, including extracts and monomers, in the treatment of atherosclerosis by inhibiting endothelial cell apoptosis and provide a foundation for the development of potential antiatherosclerotic drugs from natural medicines.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ensaios Clínicos como Assunto , Células Endoteliais/patologia , Humanos , Lipoproteínas LDL/toxicidade , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
14.
Bioorg Med Chem Lett ; 47: 128230, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34186178

RESUMO

A series of novel ligustrazine-chalcone hybrids were synthesized and evaluated for their in vitro and in vivo antitumor activities. The results showed that most of these compounds exhibited significant in vitro cytotoxicity against MDA-MB-231, MCF-7, A549 and HepG2 cell lines with IC50 values as low as sub-micromole. Among them, compounds 6c and 6f possessed better comprehensive characteristics for the antiproliferation effects on both MDA-MB-231 (IC50: 6c, 1.60 ± 0.21 µM; 6f, 1.67 ± 1.25 µM) and MCF-7 (IC50: 6c, 1.41 ± 0.23 µM; 6f, 1.54 ± 0.30 µM). They also exhibited the potent colony-formation inhibitory abilities on above two cell lines in both concentration and time dependent manners, as well as the significantly suppression capabilities against the migration of such cell lines in a concentration dependent manner by wound-healing assay. Of note, compound 6c could significantly induce the apoptosis of MDA-MB-231 cells in a concentration dependent manner and inhibited the transformation of the growth cycle of MDA-MB-231 cells and blocked the cell growth cycle in G0/G1 phase. Moreover, the in vivo antiproliferation assay of compound 6c on TNBC model indicated such compound had a remarkable potency against tumor growth with a widely safety window. Further immunohistochemistry analysis illustrated that compound 6c was provided with a potent capacity to significantly reduce the Ki-67 positive rate in a dose dependent manner. All the results suggested that these hybrids presented both in vitro and in vivo proliferation inhibition potency against breast cancer and further development with good therapeutic potential should be of great interest.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Pirazinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirazinas/química , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia
15.
BMC Surg ; 21(1): 211, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902534

RESUMO

BACKGROUND: Postoperative peritoneal adhesion (PPA) is regarded as fibrous bands connecting both injured abdominal wall and organs or adjacent tissues. It is associated with T helper (Th)1 and Th2 differentiation. However, the critical role of the immunopathogenesis of adhesion formation was precisely unknown. The aim of this study was to investigate the effect of a new agent polylactic acid (PLA) nanoparticles loaded with ligustrazine, that is, ligustrazine nanoparticles (LN) on PPA and identify the potential mechanism. METHODS: Twenty-four Sprague-Dawley rats were randomly divided into the sham, model, LN, and sodium hyaluronate (SH) groups. The structure of LN, including entrapment efficiency (EE) and loading capacity (LC), and in vitro drug release were calculated. Adhesions were scored and the Masson's trichrome staining was used to determine the collagen deposition. The expressions of TLR4, MyD88, and NF-κB were measured by qRT-PCR, immunohistochemistry, and western blot assay. Moreover, Th1-related cytokines (IFN-γ, IL-12), Th2-related cytokines (IL-4, IL-6) in the cecum tissue and serum were conducted by ELISA. RESULTS: LN had good EE, LC, and control-release delivery characters with fairly uniform diameter and spherical morphology. It could effectively prevent adhesion formation after surgery. Besides, it could reduce collagen fibers accumulation, downregulate the expression levels of TLR4, MyD88, and NF-κB, and maintain Th1/Th2 balance. CONCLUSIONS: Ligustrazine nanoparticles had effective effects on Th1/Th2 balance by regulating TLR4/MyD88/NF-κB pathway in PPA rats. It may be served as a promising therapy on postoperative adhesion formation.


Assuntos
Nanopartículas , Pirazinas/uso terapêutico , Equilíbrio Th1-Th2 , Aderências Teciduais/tratamento farmacológico , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Microvasc Res ; 128: 103938, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682800

RESUMO

OBJECTIVE: In the present study, we used a two-kidney-two-clip (2k2c) stroke-prone renovascular hypertension rat model (RHRSP) to investigate the protective effects of ligustrazine (TMP) on cerebral arteries and to examine PI3K/Akt pathway behavior under this protection. METHODS: The cerebral artery remodeling was induced by 2k2c-induced renovascular hypertension. Brain basilar artery tissues were isolated and their histological changes were detected through H&E and EVG staining, α-SMA IHC staining, and transmission electron microscopy at four, eight, and twelve weeks after 2k2c surgery, both with and without TMP treatment. Meanwhile, the ET-1, Ang II, and NO levels in basilar arteries and plasma were determined. Furthermore, the PTEN expression and the activation of PI3K/Akt in basilar artery tissues were detected through IHC and Western Blot. In addition, the primary basilar artery smooth muscle cells (BASMCs) were cultured and TMP protection of BASMCs stimulated with ET-1/Ang II in the presence or absence of insulin-like growth factor 1 (IGF-1) was determined. RESULTS: TMP attenuated basilar artery remodeling, decreased ET-1 and Ang II levels and increased NO level in basilar arteries and plasma of RHRSP rats. Moreover, TMP reduced BASMCs proliferation upon ET-1/Ang II stimulation. We also found that TMP could effectively suppress the activation of PI3K/Akt in 2k2c-RHRSP rat basilar artery and ET-1/Ang II stimulated BASMCs. Most importantly, IGF-1, as an activator of PI3K/Akt, could damage the protective effect of TMP. CONCLUSIONS: TMP exerts its protective effects and prevents basilar artery remodeling in RHRSP rats at least partly through the inhibition of PI3K/Akt pathway.


Assuntos
Hipertensão Renovascular/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/farmacologia , Artérias Temporais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Endotelina-1/metabolismo , Hipertensão Renovascular/enzimologia , Hipertensão Renovascular/patologia , Hipertensão Renovascular/fisiopatologia , Ligadura , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/fisiopatologia , Músculo Liso Vascular/ultraestrutura , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Artéria Renal/cirurgia , Transdução de Sinais , Artérias Temporais/enzimologia , Artérias Temporais/fisiopatologia , Artérias Temporais/ultraestrutura
17.
Mol Cell Biochem ; 464(1-2): 73-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31732832

RESUMO

Sepsis-associated acute kidney injury (AKI) is a life threatening condition with high morbidity and mortality. The pathogenesis of AKI is associated with apoptosis. In this study, we investigated the effects of ligustrazine (LGZ) on experimental sepsis-associated AKI in mice. Sepsis-associated AKI was induced in a mice model using cecal ligation and puncture (CLP) method. Mice were administered LGZ (10, 30, and 60 mg/kg) via tail vein injection 0.5 h before CLP surgery. Mice survival was evaluated. Renal water content was detected. Urine samples were collected for ELISA of Kim1. Kidneys were collected for nucleic acid analysis and histological examination. Pathological assessment was used to determine the effect of LGZ on sepsis-associated AKI. Caspase-3 expression in kidney was assessed by immunohistochemistry. Renal NMDAR1 level was also determined. Treatment of LGZ improved mice survival rate; the effect was significant when administered at a high LGZ dose (60 mg/kg). Renal water content of mice undergoing CLP was significantly reduced by LGZ treatment. Both middle-dose and high-dose LGZ treatments reduced urine Kim1 level in sepsis-associated AKI mice. The severity of AKI in septic mice was reduced by middle-dose and high-dose LGZ administration. Immunohistochemical analysis revealed decreased caspase-3 and NMDAR1 levels in the kidney following middle-dose and high-dose LGZ treatments. RT-PCR assay showed a significant reduction in NMDAR1 mRNA expression in the kidney of middle-dose and high-dose LGZ-treated mice. LGZ exhibited protective effects against sepsis-associated AKI in mice, possibly via downregulation of renal NMDAR1 expression and its anti-apoptotic action by inhibiting caspase-3.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Caspase 3/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Pirazinas/farmacologia , Receptores de N-Metil-D-Aspartato/biossíntese , Sepse/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Sepse/metabolismo , Sepse/patologia
18.
Pharmacol Res ; 159: 104795, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32278035

RESUMO

Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Mucosa Nasal/metabolismo , Preparações de Plantas/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Administração Intranasal , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Composição de Medicamentos , Humanos , Preparações de Plantas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Distribuição Tecidual
19.
Biomed Chromatogr ; 34(9): e4869, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32346872

RESUMO

To investigate the effect of ligustrazine on the pharmacokinetic profile of tanshinol after intravenous administration in rats, a sensitive liquid chromatography tandem mass spectrometry method was developed and validated for quantitative determination of tanshinol and ligustrazine in rat plasma. After prepared by protein precipitation, the analytes were separated on a Waters Acquity HSS T3 column (100 × 2.1 mm, 1.8µm) and eluted by 0.1% formic acid in water and acetonitrile at a flow rate of 0.4 ml/min. The precursor-product ion transitions were m/z 197.0 → 135.0 for tanshinol, m/z 417.1 → 255.1 for liquiritin (internal standard) in negative ion mode and m/z 137.1 → 55.0 for ligustrazine in positive ion mode. To avoid the interference of tanshinol metabolite transformation, the stability of analytes in samples collected after administration was assessed. The validated method was successfully applied to a pharmacokinetic study after intravenous administration of single tanshinol and Danshen Chuanxiongqin Injection. After Danshen Chuanxiongqin injection administration, the values of elimination half-time, area under the concentration-time curve and Co were 0.36 ± 0.13 h, 1.29 ± 0.37 µg/ml h and 10.51 ± 2.58 µg/ml for male rats, respectively. In the single tanshinol group, the corresponding values were 0.56 ± 0.24 h, 1.85 ± 0.44 µg/ml h and 14.11 ± 2.26 µg/ml for male rats-30-40% higher than those for the Danshen Chuanxiongqin Injection group. There was a significant different between male and female rats. This study provided information on the influence of ligustrazine on the pharmacokinetic characteristics of tanshinol after intravenous administration of Danshen Chuanxiongqin Injection in rats, which will be helpful for its clinical application.


Assuntos
Ácidos Cafeicos , Pirazinas , Administração Intravenosa , Animais , Ácidos Cafeicos/administração & dosagem , Ácidos Cafeicos/sangue , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Modelos Lineares , Masculino , Pirazinas/administração & dosagem , Pirazinas/sangue , Pirazinas/química , Pirazinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Salvia miltiorrhiza , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
20.
Exp Mol Pathol ; 106: 102-108, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576641

RESUMO

BACKGROUND: Pressure ulcers are a kind of troublesome disease which caused by long-term pressure and subsequently lead to tissue festering necrosis because of sustained ischemia, hypoxia and malnutrition. In our study, we used hypoxia to stimulate human umbilical vein endothelial cells (HUVECs) to mimic pressure ulcers and investigated the effects of Ligustrazine (Lig) with multi-activities on HUVECs. METHODS: HUVECs were treated by hypoxia to induce cell injury. HUVECs were administrated with Lig and/or transfected with miR-135b inhibitor or negative control. Cell viability and cell apoptosis were detected by Cell Counting kit-8 assay and flow cytometry, respectively. The protein expression of Cyclin D1 and p53, the apoptosis-related proteins (Bcl-2, Bax, pro-/Cleaved-Caspas-3), and the JNK/SAPK and PI3K/AKT/mTOR pathways related proteins was examined by western blot. RESULTS: Hypoxia-induced injury presented by decreasing cell viability and increasing cell apoptosis. Then Lig administration enhanced cell viability and inhibited cell apoptosis. Importantly, miR-135b was upregulated by the treatment of Lig. Further studies revealed that transfection with miR-135b inhibitor led to the opposite result with decreasing cell viability and increasing cell apoptosis. In addition, Lig increased the phosphorylation of JNK, SAPK, PI3K, AKT and mTOR. CONCLUSION: Lig promoted hypoxia-treated HUVECs cell growth as evidenced by increasing cell viability and reducing cell apoptosis. This process might be modulated by upregulation of miR-135b and subsequent activation of JNK/SAPK and PI3K/AKT/mTOR pathways.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/biossíntese , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Úlcera por Pressão/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirazinas/química , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa