Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37194566

RESUMO

We present genome sequences for the caecilians Geotrypetes seraphini (3.8 Gb) and Microcaecilia unicolor (4.7 Gb), representatives of a limbless, mostly soil-dwelling amphibian clade with reduced eyes, and unique putatively chemosensory tentacles. More than 69% of both genomes are composed of repeats, with retrotransposons being the most abundant. We identify 1,150 orthogroups that are unique to caecilians and enriched for functions in olfaction and detection of chemical signals. There are 379 orthogroups with signatures of positive selection on caecilian lineages with roles in organ development and morphogenesis, sensory perception, and immunity amongst others. We discover that caecilian genomes are missing the zone of polarizing activity regulatorysequence (ZRS) enhancer of Sonic Hedgehog which is also mutated in snakes. In vivo deletions have shown ZRS is required for limb development in mice, thus, revealing a shared molecular target implicated in the independent evolution of limblessness in snakes and caecilians.


Assuntos
Anfíbios , Proteínas Hedgehog , Animais , Camundongos , Proteínas Hedgehog/genética , Anfíbios/genética , Genoma , Serpentes/genética , Aclimatação , Evolução Molecular
2.
Dev Dyn ; 250(9): 1300-1317, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33511716

RESUMO

BACKGROUND: In vertebrates, the skull evolves from a complex network of dermal bones and cartilage-the latter forming the pharyngeal apparatus and the chondrocranium. Squamates are particularly important in this regard as they maintain at least part of the chondrocranium throughout their whole ontogeny until adulthood. Anguid lizards represent a unique group of squamates, which contains limbed and limbless forms and show conspicuous variation of the adult skull. RESULTS: Based on several emboadryonic stages of the limbless lizards Pseudopus apodus and Anguis fragilis, and by comparing with other squamates, we identified and interpreted major differences in chondrocranial anatomy. Among others, the most important differences are in the orbitotemporal region. P. apodus shows a strikingly similar development of this region to other squamates. Unexpectedly, however, A. fragilis differs considerably in the composition of the orbitotemporal region. In addition, A. fragilis retains a paedomorphic state of the nasal region. CONCLUSIONS: Taxonomic comparisons indicate that even closely related species with reduced limbs show significant differences in chondrocranial anatomy. The Pearson correlation coefficient suggests strong correlation between chondrocranial reduction and limb reduction. We pose the hypothesis that limb reduction could be associated with the reduction in chondrocrania by means of genetic mechanisms.


Assuntos
Evolução Biológica , Lagartos , Animais , Cartilagem , Extremidades , Crânio/anatomia & histologia
3.
Genesis ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095557

RESUMO

The evolution of snakes involved dramatic modifications to the ancestral lizard body plan. Limb loss and elongation of the trunk are hallmarks of snakes, although convergent evolution of limb-reduced and trunk-elongated forms occurred multiple times in snake-like lizards. Advanced snakes are completely limbless, but intermediate and basal snakes have retained rudiments of hindlimbs and pelvic girdles. Moreover, the snake fossil record indicates that complete legs were re-acquired at least once, suggesting that the potential for limb development was retained in some limb-reduced taxa. Recent work has shown that python embryos initiate development of a transitory distal leg skeleton, including a footplate, and that the limb-specific enhancer of the Sonic hedgehog gene, known as the zone of polarizing activity regulatory sequence (ZRS), underwent gradual degeneration during snake evolution. In this article, we review historical and recent investigations into squamate limblessness, and we discuss how new genomic and functional genetic experiments have improved our understanding of the evolution of limblessness in snakes. Finally, we explore the idea that pleiotropy of cis-regulatory elements may illuminate the convergent genetic changes that occurred in snake-like lizards, and we discuss a number of challenges that remain to be addressed in future studies.


Assuntos
Evolução Biológica , Extremidades , Serpentes , Animais , Evolução Molecular , Fósseis , Pleiotropia Genética , Lagartos
4.
Genet Mol Biol ; 38(3): 255-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500429

RESUMO

Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes.

5.
Cell Rep ; 38(3): 110280, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045302

RESUMO

Loss of limbs evolved many times in squamate reptiles. Here we investigated the genomic basis of convergent limb loss in reptiles. We sequenced the genomes of a closely related pair of limbless-limbed gymnophthalmid lizards and performed a comparative genomic analysis including five snakes and the limbless glass lizard. Our analysis of these three independent limbless lineages revealed that signatures of shared sequence or transcription factor binding site divergence in individual limb regulatory elements are generally rare. Instead, shared divergence occurs more often at the level of signaling pathways, involving different regulatory elements associated with the same limb genes (such as Hand2 or Hox) and/or patterning mechanisms (such as Shh signaling). Interestingly, although snakes are known to have mutations in the Shh ZRS limb enhancer, this enhancer lacks relevant mutations in limbless lizards. Thus, different mechanisms could contribute to limb loss, and there are likely multiple evolutionary paths to limblessness in reptiles.


Assuntos
Evolução Biológica , Extremidades , Répteis/anatomia & histologia , Répteis/genética , Transcriptoma , Animais , Genômica , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética
6.
Curr Biol ; 26(21): 2966-2973, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27773569

RESUMO

Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT.


Assuntos
Padronização Corporal , Boidae/genética , Evolução Molecular , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Répteis/genética , Animais , Evolução Biológica , Boidae/anatomia & histologia , Boidae/crescimento & desenvolvimento , Extremidades/anatomia & histologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Répteis/metabolismo
7.
Gigascience ; 4: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859342

RESUMO

BACKGROUND: Transition from a lizard-like to a snake-like body form is one of the most important transformations in reptilian evolution. The increasing number of sequenced reptilian genomes is enabling a deeper understanding of vertebrate evolution, although the genetic basis of the loss of limbs in reptiles remains enigmatic. Here we report genome sequencing, assembly, and annotation for the Asian glass lizard Ophisaurus gracilis, a limbless lizard species with an elongated snake-like body form. Addition of this species to the genome repository will provide an excellent resource for studying the genetic basis of limb loss and trunk elongation. FINDINGS: O. gracilis genome sequencing using the Illumina HiSeq2000 platform resulted in 274.20 Gbp of raw data that was filtered and assembled to a final size of 1.78 Gbp, comprising 6,717 scaffolds with N50 = 1.27 Mbp. Based on the k-mer estimated genome size of 1.71 Gbp, the assembly appears to be nearly 100% complete. A total of 19,513 protein-coding genes were predicted, and 884.06 Mbp of repeat sequences (approximately half of the genome) were annotated. The draft genome of O. gracilis has similar characteristics to both lizard and snake genomes. CONCLUSIONS: We report the first genome of a lizard from the family Anguidae, O. gracilis. This supplements currently available genetic and genomic resources for amniote vertebrates, representing a major increase in comparative genome data available for squamate reptiles in particular.


Assuntos
Evolução Biológica , Genoma , Lagartos/genética , Animais , Bases de Dados Genéticas , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa