Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(5): 1207-1219, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32188278

RESUMO

OBJECTIVE: Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS: Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.


Assuntos
Acetaminofen/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Hipotensão/induzido quimicamente , Canais de Potássio KCNQ/agonistas , Artérias Mesentéricas/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Acetaminofen/metabolismo , Animais , Benzoquinonas , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Iminas , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Ratos Wistar , Transdução de Sinais , Xenopus laevis
2.
Exp Lung Res ; 46(10): 363-375, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32945215

RESUMO

PURPOSE: Hypoxic pulmonary vasoconstriction (HPV) regulates regional pulmonary blood flow in order to match regional ventilation to preserve arterial oxygenation. HPV is impaired in patients with sepsis or acute respiratory distress syndrome (ARDS). Endotoxemic mice show reduced HPV and recent evidence suggests a central role of voltage gated potassium channel 7 (Kv7) in regulating HPV. Therefore, we tested the hypothesis if Kv7 is induced and inhibition of Kv7 increases HPV in endotoxemia. MATERIALS AND METHODS: Isolated lungs of LPS-pretreated and untreated animals were perfused with and without specific inhibitors of Kv7 (linopirdine (LI) 0, 0.1, 1 and 10 µM) or Kv7.1 (HMR1556 100 nM). Pulmonary artery pressure (PAP) during normoxic (FiO2 0.21) as well as hypoxic (FiO2 0.01) ventilation were obtained. Expressions of Kv7 composing (KCNQ1-5) as well as auxiliary subunits (KCNE1-5) were measured in mouse lungs with and without endotoxemia. RESULTS: HPV was impaired in lungs from LPS mice (16 ± 7% vs 105 ± 13% control, p < 0.05). Perfusion of control lungs with 10 µM LI or 100 nM HMR1556 did not affect HPV (LI 105 ± 12% vs 105 ± 13% vehicle, HMR1556 100 ± 6% vs 98 ± 26%, P = NS). In LPS mice perfusion with 10 µM LI (74.2 ± 7% vs. 16 ± 7% vehicle, P < 0.05) or HMR1556 100 nM augmented HPV (74 ± 28% vs. 15 ± 17% vehicle, P < 0.05). KCNQ1, 4 and 5 gene- and protein expressions as well as KCNE1, 2 and 4 gene expressions were unaltered in endotoxemic lungs. KCNE3 gene and protein expressions were increased in lungs of LPS treated mice (3.1 ± 1.3-fold and 1.8 ± 0.3-fold, respectively, P < 0.05 for both). CONCLUSIONS: Endotoxemia does not alter KCNQ1, 4 and 5 gene and protein expressions but increases pulmonary KCNE3 gene and protein expression. In isolated perfused endotoxemic mouse lungs, perfusion with 10 µM LI or 100 nM HMR1556 augments HPV.


Assuntos
Endotoxemia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Hipóxia , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Artéria Pulmonar , Circulação Pulmonar , Vasoconstrição
3.
Artigo em Inglês | MEDLINE | ID: mdl-29702725

RESUMO

Recently, we demonstrated that Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements in short-term rat models of haemorrhagic shock. The aim of the present study was to further delineate the therapeutic potential and side effect profile of the Kv7 channel blocker linopirdine in various rat models of severe haemorrhagic shock over clinically relevant time periods. Intravenous administration of linopirdine, either before (1 or 3 mg/kg) or after (3 mg/kg) a 40% blood volume haemorrhage, did not affect blood pressure and survival in lethal haemorrhage models without fluid resuscitation. A single bolus of linopirdine (3 mg/kg) at the beginning of fluid resuscitation after haemorrhagic shock transiently reduced early fluid requirements in spontaneously breathing animals that were resuscitated for 3.5 hours. When mechanically ventilated rats were resuscitated after haemorrhagic shock with normal saline (NS) or with linopirdine-supplemented (10, 25 or 50 µg/mL) NS for 4.5 hours, linopirdine significantly and dose-dependently reduced fluid requirements by 14%, 45% and 55%, respectively. Lung and colon wet/dry weight ratios were reduced with linopirdine (25/50 µg/mL). There was no evidence for toxicity or adverse effects based on measurements of routine laboratory parameters and inflammation markers in plasma and tissue homogenates. Our findings support the concept that linopirdine-supplementation of resuscitation fluids is a safe and effective approach to reduce fluid requirements and tissue oedema formation during resuscitation from haemorrhagic shock.

4.
J Biomed Sci ; 24(1): 8, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095830

RESUMO

BACKGROUND: Recent evidence suggests that drugs targeting Kv7 channels could be used to modulate vascular function and blood pressure. Here, we studied whether Kv7 channel inhibitors can be utilized to stabilize hemodynamics and reduce resuscitation fluid requirements after hemorrhagic shock. METHODS: Anesthetized male Sprague-Dawley rats were instrumented with arterial and venous catheters for blood pressure monitoring, hemorrhage and fluid resuscitation. Series 1: Linopirdine (Kv7 channel blocker, 0.1-6 mg/kg) or retigabine (Kv7 channel activator, 0.1-12 mg/kg) were administered to normal animals. Series 2: Animals were hemorrhaged to a MAP of 25 mmHg for 30 min, followed by fluid resuscitation with normal saline (NS) to a MAP of 70 mmHg until t = 75 min. Animals were treated with single bolus injections of vehicle, linopirdine (1-6 mg/kg), XE-991 (structural analogue of linopirdine with higher potency for channel blockade, 1 mg/kg) prior to fluid resuscitation. Series 3: Animals were resuscitated with NS alone or NS supplemented with linopirdine (1.25-200 µg/mL). Data were analyzed with 2-way ANOVA/Bonferroni post-hoc testing. RESULTS: Series 1: Linopirdine transiently (10-15 min) and dose-dependently increased MAP by up to 15%. Retigabine dose-dependently reduced MAP by up to 60%, which could be reverted with linopirdine. Series 2: Fluid requirements to maintain MAP at 70 mmHg were 65 ± 34 mL/kg with vehicle, and 57 ± 13 mL/kg, 22 ± 8 mL/kg and 22 ± 11 mL/kg with intravenous bolus injection of 1, 3 and 6 mg/kg linopirdine, respectively. XE-991 (1 mg/kg), reduced resuscitation requirements comparable to 3 mg/kg linopirdine. Series 3: When resuscitation was performed with linopirdine-supplemented normal saline (NS), fluid requirements to stabilize MAP were 73 ± 12 mL/kg with NS alone and 72 ± 24, 61 ± 20, 36 ± 9 and 31 ± 9 mL/kg with NS supplemented with 1.25, 6.25, 12.5 and 200 µg/mL linopirdine, respectively. CONCLUSIONS: Our data suggest that Kv7 channel blockers could be used to stabilize blood pressure and reduce fluid resuscitation requirements after hemorrhagic shock.


Assuntos
Carbamatos/farmacologia , Indóis/farmacologia , Canais de Potássio KCNQ/antagonistas & inibidores , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Ressuscitação , Choque Hemorrágico/terapia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Korean J Physiol Pharmacol ; 21(2): 251-257, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280419

RESUMO

Inhibition of K+ outward currents by linopirdine in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), was investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) and ICR mice of the same age (postnatal day (P) 0 -P6) were used as controls. Voltage steps from -100 mV to 40 mV elicited small inward currents (-100 mV~-70 mV) and slow rising K+ outward currents (-60 mV ~40 mV) which activated near -50 mV in all OHCs tested. Linopirdine, a known blocker of K+ currents activated at negative potentials (IK,n), did cause inhibition at varying degree (severe, moderate, mild) in K+ outward currents of heterozygous (+/cir) or homozygous (cir/cir) mice OHCs in the concentration range between 1 and 100 µM, while it was apparent only in one ICR mice OHC out of nine OHCs at 100 µM. Although the half inhibition concentrations in heterozygous (+/cir) or homozygous (cir/cir) mice OHCs were close to those reported in IK,n, biophysical and pharmacological properties of K+ outward currents, such as the activation close to -50 mV, small inward currents evoked by hyperpolarizing steps and TEA sensitivity, were not in line with IK,n reported in other tissues. Our results show that the delayed rectifier type K+ outward currents, which are not similar to IK,n with respect to biophysical and pharmacological properties, are inhibited by linopirdine in the developing (P0~P6) homozygous (cir/cir) or heterozygous (+/cir) mice OHCs.

6.
Am J Physiol Heart Circ Physiol ; 310(6): H693-704, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26825518

RESUMO

Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/metabolismo , Canais de Potássio KCNQ/genética , Comunicação Parácrina/fisiologia , Túnica Adventícia/metabolismo , Aminopiridinas/farmacologia , Animais , Western Blotting , Bradicinina/farmacologia , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/metabolismo , Indóis/farmacologia , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
7.
Epilepsia ; 57(5): e87-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27030113

RESUMO

Mutations in the KCNQ2 gene encoding the voltage-gated potassium channel subunit Kv7.2 cause early onset epileptic encephalopathy (EOEE). Most mutations have been shown to induce a loss of function or to affect the subcellular distribution of Kv7 channels in neurons. Herein, we investigated functional consequences and subcellular distribution of the p.V175L mutation of Kv7.2 (Kv7.2(V175L) ) found in a patient presenting EOEE. We observed that the mutation produced a 25-40 mV hyperpolarizing shift of the conductance-voltage relationship of both the homomeric Kv7.2(V175L) and heteromeric Kv7.2(V175L) /Kv7.3 channels compared to wild-type channels and a 10 mV hyperpolarizing shift of Kv7.2(V175L) /Kv7.2/Kv7.3 channels in a 1:1:2 ratio mimicking the patient situation. Mutant channels also displayed faster activation kinetics and an increased current density that was prevented by 1 µm linopirdine. The p.V175L mutation did not affect the protein expression of Kv7 channels and its localization at the axon initial segment. We conclude that p.V175L is a gain of function mutation. This confirms previous observations showing that mutations having opposite consequences on M channels can produce EOEE. These findings alert us that drugs aiming to increase Kv7 channel activity might have adverse effects in EOEE in the case of gain-of-function variants.


Assuntos
Canal de Potássio KCNQ2/genética , Polimorfismo de Nucleotídeo Único/genética , Espasmos Infantis/genética , Animais , Anquirinas/metabolismo , Anticonvulsivantes/farmacologia , Células CHO , Carbamatos/farmacologia , Cricetulus , Estimulação Elétrica , Feminino , Hipocampo/citologia , Humanos , Indóis/farmacologia , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia
8.
Neuroscience ; 497: 73-85, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752429

RESUMO

Oxytocin (OT) and vasopressin (AVP) are two closely related neuropeptides implicated in learning and memory processes, anxiety, nociception, addiction, feeding behavior and social information processing. Regarding learning and memory, OT has induced long-lasting impairment in different behaviors, while the opposite was observed with AVP. We have previously evaluated the effect of peripheral administration of OT or its antagonist (AOT) on the inhibitory avoidance response of mice and on the modulation of cholinergic mechanisms. Here, we replicate and validate those results, but this time through central administration of neuropeptides, considering their poor passage through the blood-brain barrier (BBB). When we delivered OT (0.10 ng/mouse) and its antagonist (0.10 ng/mouse) through intracerebroventricular (ICV) injections, the neuropeptide impaired and AOT enhanced the behavioral performance on an inhibitory avoidance response evaluated 48 h after training in a dose-dependent manner. On top of that, we investigated a possible central interaction between OT and the cholinergic system. Administration of anticholinesterases inhibitors with access to the central nervous system (CNS), the activation of muscarinic acetylcholine (Ach) receptors and the increase of evoked ACh release using linopirdine (Lino) (3-10 µg/kg, IP), reversed the impairment of retention performance induced by OT. Besides, either muscarinic or nicotinic antagonists with unrestricted access to the CNS reduced the magnitude of the performance-facilitating effect of AOT's central infusion. We suggest that OT might induce a cholinergic hypofunction state, resulting in an impairment of IA memory formation, a process for which the cholinergic system is crucially necessary.


Assuntos
Ocitocina , Receptores de Ocitocina , Aprendizagem , Memória , Antagonistas Nicotínicos/farmacologia , Ocitocina/farmacologia , Receptores Muscarínicos
9.
Biomolecules ; 12(3)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327621

RESUMO

Pulmonary hypertension is treated with drugs that stimulate cGMP or cAMP signalling. Both nucleotides can activate Kv7 channels, leading to smooth muscle hyperpolarisation, reduced Ca2+ influx and relaxation. Kv7 activation by cGMP contributes to the pulmonary vasodilator action of nitric oxide, but its contribution when dilation is evoked by the atrial natriuretic peptide (ANP) sensitive guanylate cyclase, or cAMP, is unknown. Small vessel myography was used to investigate the ability of Kv7 channel blockers to interfere with pulmonary artery relaxation when cyclic nucleotide pathways were stimulated in different ways. The pan-Kv7 blockers, linopirdine and XE991, caused substantial inhibition of relaxation evoked by NO donors and ANP, as well as endothelium-dependent dilators, the guanylate cyclase stimulator, riociguat, and the phosphodiesterase-5 inhibitor, sildenafil. Maximum relaxation was reduced without a change in sensitivity. The blockers had relatively little effect on cAMP-mediated relaxation evoked by forskolin, isoprenaline or treprostinil. The Kv7.1-selective blocker, HMR1556, had no effect on cGMP or cAMP-dependent relaxation. Western blot analysis demonstrated the presence of Kv7.1 and Kv7.4 proteins, while selective activators of Kv7.1 and Kv7.4 homomeric channels, but not Kv7.5, caused pulmonary artery relaxation. It is concluded that Kv7.4 channels contribute to endothelium-dependent dilation and the effects of drugs that act by stimulating cGMP, but not cAMP, signalling.


Assuntos
Fator Natriurético Atrial , Artéria Pulmonar , Animais , Fator Natriurético Atrial/farmacologia , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Óxido Nítrico , Nucleotídeos Cíclicos , Artéria Pulmonar/metabolismo , Ratos
10.
Neuroscience ; 340: 62-75, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27984184

RESUMO

The M-current (IM) is a voltage-dependent, persistent K+ current so termed because it is strongly inhibited by the cholinergic agonist muscarine. The IM main function is to limit neuronal excitability by contrasting action potential firing. Although motoneurons are sensitive to acetylcholine, the role of IM in modulating their excitability is still controversial. The aim of the present report was to examine the presence of IM in hypoglossal motoneurons (HMs) and its role in the modulation of firing properties using an in vitro model of rat brainstem slice. For this purpose, we employed the whole-cell patch-clamp technique to record HM responses upon stimulation with either a standard IM deactivation voltage protocol or depolarizing current steps. Voltage commands from depolarized potential induced inward relaxations with the common characteristics of IM, comprising inhibition by either muscarine (10µM) or the selective IM inhibitor linopirdine (30µM). IM was pharmacologically distinguished from the hyperpolarization-activated inward-rectifying current and, within the -20 to -50mV range, deactivated with >100-ms time constant. Current-clamp experiments demonstrated that IM strongly regulated HM action potential firing, since both muscarine and linopirdine increased spike frequency whereas the M-channel opener retigabine (20µM) reduced it. Conversely, IM seemed uninvolved in the generation of the medium afterhyperpolarizing potential. Our results suggest that HMs possess IM, whose pharmacological modulation is an important tool to up- or down-regulate excitability, to be explored in experimental models of neurodegeneration.


Assuntos
Nervo Hipoglosso/fisiologia , Neurônios Motores/fisiologia , Canais de Potássio/metabolismo , Animais , Nervo Hipoglosso/efeitos dos fármacos , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Muscarina/farmacologia , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Piridinas/farmacologia , Ratos Wistar , Técnicas de Cultura de Tecidos
11.
Eur J Pharmacol ; 733: 97-101, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24726846

RESUMO

K(+) channels play important functional roles in excitable cells, as neurons and muscle cells. The activation or inhibition of K(+) channels hyperpolarizes or depolarizes the cell membrane, respectively. These effects determine in the smooth muscle decrease or increase in Ca(2+) influx through voltage-gated Ca(2+) (CaV1.2) channels and relaxation or contraction, respectively. Recent studies highlight the importance of voltage-dependent type 7 K(+) (KV7 or KCNQ) channels in regulating muscle tone and contractility in stomach and colon. KV7 channels, that include 5 subtypes (KV7.1-7.5), are activated at relatively negative potential values, close to those of the resting membrane potential for the smooth muscle cells of some segments of the gastrointestinal tract. Thus, they contribute to set the resting membrane potential and their blockade induces increase in smooth muscle contractility in stomach and colon. In addition, KV7 channel activation produces profound relaxations of gastric and colonic smooth muscle. Therefore, KV7 channel activators could be used to relax the smooth muscle and relieve symptoms in diseases such as functional dyspepsia and irritable bowel syndrome with prevalent diarrhea. The discovery of activators selective for the channel subtypes present in the smooth muscle, mainly KV7.4 and 7.5, would allow avoiding adverse cardiac and nervous system effects. A further step forward would be characterizing putative differences among the KV7 channel subtypes expressed in the various smooth muscles and synthesizing molecules specific for the gastrointestinal smooth muscle.


Assuntos
Dispepsia/tratamento farmacológico , Motilidade Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/tratamento farmacológico , Canais de Potássio KCNQ/metabolismo , Terapia de Alvo Molecular , Animais , Dispepsia/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Síndrome do Intestino Irritável/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos
12.
Artigo em Inglês | WPRIM | ID: wpr-728573

RESUMO

Inhibition of K⁺ outward currents by linopirdine in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), was investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) and ICR mice of the same age (postnatal day (P) 0 –P6) were used as controls. Voltage steps from –100 mV to 40 mV elicited small inward currents (–100 mV~–70 mV) and slow rising K⁺ outward currents (–60 mV ~40 mV) which activated near –50 mV in all OHCs tested. Linopirdine, a known blocker of K⁺ currents activated at negative potentials (I(K,n)), did cause inhibition at varying degree (severe, moderate, mild) in K⁺ outward currents of heterozygous (+/cir) or homozygous (cir/cir) mice OHCs in the concentration range between 1 and 100 µM, while it was apparent only in one ICR mice OHC out of nine OHCs at 100 µM. Although the half inhibition concentrations in heterozygous (+/cir) or homozygous (cir/cir) mice OHCs were close to those reported in I(K,n), biophysical and pharmacological properties of K⁺ outward currents, such as the activation close to –50 mV, small inward currents evoked by hyperpolarizing steps and TEA sensitivity, were not in line with I(K,n) reported in other tissues. Our results show that the delayed rectifier type K⁺ outward currents, which are not similar to I(K,n) with respect to biophysical and pharmacological properties, are inhibited by linopirdine in the developing (P0~P6) homozygous (cir/cir) or heterozygous (+/cir) mice OHCs.


Assuntos
Animais , Humanos , Camundongos , Surdez , Células Ciliadas Auditivas Externas , Camundongos Endogâmicos ICR , Modelos Animais , Chá
13.
Artigo em Coreano | WPRIM | ID: wpr-761644

RESUMO

Vasoconstriction is regulated by various ion channels expressed in the plasma membrane of vascular smooth muscle cells. In particular, potassium (K+) channel activity determines resting membrane potential and regulates intracellular calcium (Ca2+) signaling. A number of studies have suggested that dysregulation of K+ channel activity is associated with increased myogenic tone or diminished vasorelaxation. Among the various families of K+ channels, voltage-dependent K+ channels (Kv channels) encoded by the KCNQ gene family (Kv7 channels or M channels) are widely expressed in various blood vessels isolated from mouse, rat, and human. Recent studies have demonstrated that a subunit of the Kv7 channel, Kv7.4, is down-regulated in the aorta and mesenteric and renal arteries of the Spontaneously Hypertensive Rat (SHR) model. Previous studies have also suggested that Kv7 channels play an important role in the regulation of vasorelaxation/vasoconstriction in response to activators/blockers. In addition, previous studies have indicated that hypertension, diabetes mellitus, and cerebrovascular disease result in development of vascular dysfunction associated with Kv7 abnormalities in various animal models. This review focuses on the potential role of the Kv7 channel in vascular dysfunction.


Assuntos
Animais , Humanos , Camundongos , Ratos , Aorta , Vasos Sanguíneos , Cálcio , Membrana Celular , Diabetes Mellitus , Hipertensão , Canais Iônicos , Potenciais da Membrana , Modelos Animais , Músculo Liso Vascular , Potássio , Ratos Endogâmicos SHR , Artéria Renal , Vasoconstrição , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa