RESUMO
The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.
Assuntos
Lipídeos de Membrana/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Sítios de Ligação , Cardiolipinas/metabolismo , Cristalografia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Triptofano , Ubiquinona/química , Ubiquinona/genéticaRESUMO
Diverse extracellular proteins negatively regulate WNT signaling. One such regulator is adenomatosis polyposis coli down-regulated 1 (APCDD1), a conserved single-span transmembrane protein. In response to WNT signaling in a variety of tissues, APCDD1 transcripts are highly up-regulated. We have determined the three-dimensional structure of the extracellular domain of APCDD1, and this structure reveals an unusual architecture consisting of two closely apposed ß-barrel domains (ABD1 and ABD2). ABD2, but not ABD1, has a large hydrophobic pocket that accommodates a bound lipid. The APCDD1 ECD can also bind to WNT7A, presumably via its covalently bound palmitoleate, a modification that is common to all WNTs and is essential for signaling. This work suggests that APCDD1 functions as a negative feedback regulator by titrating WNT ligands at the surface of responding cells.
Assuntos
Polipose Adenomatosa do Colo , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Via de Sinalização Wnt , Lipídeos , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.
Assuntos
SARS-CoV-2 , SARS-CoV-2/metabolismo , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , COVID-19/metabolismo , COVID-19/virologia , Lipídeos de Membrana/metabolismo , Montagem de Vírus , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Ânions/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Membrana Celular/metabolismo , Betacoronavirus/metabolismoRESUMO
Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet (HFD)-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that wild-type (WT), but not N50A/D65A Them2, promoted HFD-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT compared with N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles (EV). Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for EV to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as represent attractive targets for managing metabolic dysfunction-associated steatotic liver disease.
RESUMO
The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.
Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genéticaRESUMO
Marine animals display diverse vibrant colors, but the mechanisms underlying their specific coloration remain to be clarified. Blue coloration is known to be achieved through a bathochromic shift of the orange carotenoid astaxanthin (AXT) by the crustacean protein crustacyanin, but other examples have not yet been well investigated. Here, we identified an ependymin (EPD)-related water-soluble blue carotenoprotein responsible for the specific coloration of the marine blue sponge Haliclona sp. EPD was originally identified in the fish brain as a protein involved in memory consolidation and neuronal regeneration. The purified blue protein, designated as EPD-related blue carotenoprotein-1, was identified as a secreted glycoprotein. We show that it consists of a heterodimer that binds orange AXT and mytiloxanthin and exhibits a bathochromic shift. Our crystal structure analysis of the natively purified EPD-related blue carotenoprotein-1 revealed that these two carotenoids are specifically bound to the heterodimer interface, where the polyene chains are aligned in parallel to each other like in ß-crustacyanin, although the two proteins are evolutionary and structurally unrelated. Furthermore, using reconstitution assays, we found that incomplete bathochromic shifts occurred when the protein bound to only AXT or mytiloxanthin. Taken together, we identified an EPD in a basal metazoan as a blue protein that decorates the sponge body by binding specific structurally unrelated carotenoids.
RESUMO
In goldfish, spinal cord injury triggers the formation of a fibrous scar at the injury site. Regenerating axons are able to penetrate the scar tissue, resulting in the recovery of motor function. Previous findings suggested that regenerating axons enter the scar through tubular structures surrounded by glial elements with laminin-positive basement membranes and that glial processes expressing glial fibrillary acidic protein (GFAP) are associated with axonal regeneration. How glia contribute to promoting axonal regeneration, however, is unknown. Here, we revealed that glial processes expressing vimentin or brain lipid-binding protein (BLBP) also enter the fibrous scar after spinal cord injury in goldfish. Vimentin-positive glial processes were more numerous than GFAP- or BLBP-positive glial processes in the scar tissue. Regenerating axons in the scar tissue were more closely associated with vimentin-positive glial processes than GFAP-positive glial processes. Vimentin-positive glial processes co-expressed matrix metalloproteinase (MMP)-14. Our findings suggest that vimentin-positive glial processes closely associate with regenerating axons through tubular structures entering the scar after spinal cord injury in goldfish. In intact spinal cord, ependymo-radial glial cell bodies express BLBP and their radial processes express vimentin, suggesting that vimentin-positive glial processes derive from migrating ependymo-radial glial cells. MMP-14 expressed in vimentin-positive glial cells and their processes might provide a beneficial environment for axonal regeneration.
Assuntos
Axônios , Carpa Dourada , Regeneração Nervosa , Neuroglia , Traumatismos da Medula Espinal , Vimentina , Animais , Carpa Dourada/metabolismo , Vimentina/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Neuroglia/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Proteínas de Ligação a Ácido Graxo/metabolismoRESUMO
Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity. To shed light on this subject, we studied G protein-dependent signaling by B1 in the absence and presence of coexpression with the PS flippase ATP11A in human embryonic kidney 293T cells. ATP11A expression reduced the amount of PS exposed extracellularly and also strikingly reduced the signaling activity of coexpressed full-length B1 but not a truncated version of the receptor lacking the thrombospondin repeats. Further experiments with an inactive mutant of ATP11A showed that the PS flippase function of ATP11A was required for modulation of B1 signaling. In coimmunoprecipitation experiments, we made the surprising finding that ATP11A not only modulates B1 signaling but also forms complexes with B1. Parallel studies in which PS in the outer leaflet was reduced by an independent method, deletion of the gene encoding the endogenous lipid scramblase anoctamin 6 (ANO6), revealed that this manipulation also markedly reduced B1 signaling. These findings demonstrate that B1 signaling is modulated by PS exposure and suggest a model in which B1 serves as a PS sensor at synapses and in other cellular contexts.
Assuntos
Fosfatidilserinas , Transdução de Sinais , Humanos , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Trombospondinas/metabolismo , Células HEK293RESUMO
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein-protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co-elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic-Diffuse B-cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Assuntos
Glioblastoma , Fatores de Troca de Nucleotídeo Guanina Rho , Glioblastoma/genética , Fatores de Troca do Nucleotídeo Guanina , Humanos , Proteínas , Fatores de Troca de Nucleotídeo Guanina Rho/genéticaRESUMO
We identified a mushroom-derived protein, maistero-2 that specifically binds 3-hydroxy sterol including cholesterol (Chol). Maistero-2 bound lipid mixture in Chol-dependent manner with a binding threshold of around 30%. Changing lipid composition did not significantly affect the threshold concentration. EGFP-maistero-2 labeled cell surface and intracellular organelle Chol with higher sensitivity than that of well-established Chol probe, D4 fragment of perfringolysin O. EGFP-maistero-2 revealed increase of cell surface Chol during neurite outgrowth and heterogeneous Chol distribution between CD63-positive and LAMP1-positive late endosomes/lysosomes. The absence of strictly conserved Thr-Leu pair present in Chol-dependent cytolysins suggests a distinct Chol-binding mechanism for maistero-2.
Assuntos
Proteínas de Transporte , Esteróis , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Crescimento Neuronal , Esteróis/metabolismoRESUMO
Lipid droplets (LDs) are intracellular organelles found in a wide range of organisms and play important roles in stress tolerance. During nitrogen (N) starvation, Chlamydomonas reinhardtii stores large amounts of triacylglycerols (TAGs) inside LDs. When N is resupplied, the LDs disappear and the TAGs are degraded, presumably providing carbon and energy for regrowth. The mechanism by which cells degrade LDs is poorly understood. Here, we isolated a mutant (dth1-1, Delayed in TAG Hydrolysis 1) in which TAG degradation during recovery from N starvation was compromised. Consequently, the dth1-1 mutant grew poorly compared to its parental line during N recovery. Two additional independent loss-of-function mutants (dth1-2 and dth1-3) also exhibited delayed TAG remobilization. DTH1 transcript levels increased sevenfold upon N resupply, and DTH1 protein was localized to LDs. DTH1 contains a putative lipid-binding domain (DTH1LBD) with alpha helices predicted to be structurally similar to those in apolipoproteins E and A-I. Recombinant DTH1LBD bound specifically to phosphatidylethanolamine (PE), a major phospholipid coating the LD surface. Overexpression of DTH1LBD in Chlamydomonas phenocopied the dth1 mutant's defective TAG degradation, suggesting that the function of DTH1 depends on its ability to bind PE. Together, our results demonstrate that the lipid-binding DTH1 plays an essential role in LD degradation and provide insight into the molecular mechanism of protein anchorage to LDs at the LD surface in photosynthetic cells.
Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Gotículas Lipídicas/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Sequência de Aminoácidos , Metabolismo dos Lipídeos/fisiologia , Nitrogênio/metabolismo , Fosfolipídeos/metabolismo , Fotossíntese/fisiologia , Triglicerídeos/metabolismoRESUMO
Microsomal triglyceride transfer protein (MTTP) is an endoplasmic reticulum resident protein that is essential for the assembly and secretion of triglyceride (TG)-rich, apoB-containing lipoproteins. Although the function and structure of mammalian MTTP have been extensively studied, how exactly MTTP transfers lipids to lipid acceptors and whether there are other biomolecules involved in MTTP-mediated lipid transport remain elusive. Here we identify a role in this process for the poorly characterized protein PRAP1. We report that PRAP1 and MTTP are partially colocalized in the endoplasmic reticulum. We observe that PRAP1 directly binds to TG and facilitates MTTP-mediated lipid transfer. A single amino acid mutation at position 85 (E85V) impairs PRAP1's ability to form a ternary complex with TG and MTTP, as well as impairs its ability to facilitate MTTP-mediated apoB-containing lipoprotein assembly and secretion, suggesting that the ternary complex formation is required for PRAP1 to facilitate MTTP-mediated lipid transport. PRAP1 is detectable in chylomicron/VLDL-rich plasma fractions, suggesting that MTTP recognizes PRAP1-bound TG as a cargo and transfers TG along with PRAP1 to lipid acceptors. Both PRAP1-deficient and E85V knock-in mutant mice fed a chow diet manifested an increase in the length of their small intestines, likely to compensate for challenges in absorbing lipid. Interestingly, both genetically modified mice gained significantly less body weight and fat mass when on high-fat diets compared with littermate controls and were prevented from hepatosteatosis. Together, this study provides evidence that PRAP1 plays an important role in MTTP-mediated lipid transport and lipid absorption.
Assuntos
Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos , Proteínas da Gravidez/metabolismo , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Transporte Biológico , Dieta Hiperlipídica , Fígado Gorduroso/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Knockout , Proteínas da Gravidez/genética , Ligação Proteica , Triglicerídeos/metabolismoRESUMO
Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.
Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de VírusRESUMO
Isolated or as a part of multidomain proteins, Sterol Carrier Protein 2 (SCP2) exhibits high affinity and broad specificity for different lipidic and hydrophobic compounds. A wealth of structural information on SCP2 domains in all forms of life is currently available; however, many aspects of its ligand binding activity are poorly understood. ylSCP2 is a well-characterized single domain SCP2 from the yeast Yarrowia lipolytica. Herein, we report the X-ray structure of unliganded ylSCP2 refined to 2.0 Å resolution. Comparison with the previously solved liganded ylSCP2 structure unveiled a novel mechanism for binding site occlusion. The liganded ylSCP2 binding site is a large cavity with a volume of more than 800 Å3. In unliganded ylSCP2 the binding site is reduced to about 140 Å3. The obliteration is caused by a swing movement of the C-terminal α helix 5 and a subtle compaction of helices 2-4. Previous pairwise comparisons were between homologous SCP2 domains with a uncertain binding status. The reported unliganded ylSCP2 structure allows for the first time a fully controlled comparative analysis of the conformational effects of ligand occupation dispelling several doubts regarding the architecture of SCP2 binding site.
Assuntos
Sítios de Ligação/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ligação Proteica/fisiologia , Yarrowia/metabolismo , Ligantes , Lipídeos/química , Domínios Proteicos/fisiologiaRESUMO
PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.
Assuntos
Proteínas de Bactérias/genética , Redes e Vias Metabólicas/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipídeos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/genética , Ácidos Fosfatídicos/genética , Fosfolipídeos/genéticaRESUMO
Serum amyloid A (SAA), one of the major highly conserved acute-phase proteins in most mammals, is predominantly produced by hepatocytes and also by a variety of cells in extrahepatic tissues. It is well-known that the expression of SAA is sharply increased in bacterial infections. However, the exact physiological function of SAA during bacterial infection remains unclear. Herein, we showed that SAA expression significantly increased in abscesses of Staphylococcus aureus cutaneous infected mice, which exert direct antibacterial effects by binding to the bacterial cell surface and disrupting the cell membrane in acidic conditions. Mechanically, SAA disrupts anionic liposomes by spontaneously forming small vesicles or micelles under acidic conditions. Especially, the N-terminal region of SAA is necessary for membrane disruption and bactericidal activity. Furthermore, we found that mice deficient in SAA1/2 were more susceptible to infection by S. aureus In addition, the expression of SAA in infected skin was regulated by interleukin-6. Taken together, these findings support a key role of the SAA in host defense and may provide a novel therapeutic strategy for cutaneous bacterial infection.
Assuntos
Antibacterianos/metabolismo , Imunidade Inata , Proteína Amiloide A Sérica/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Proteínas de Fase Aguda/imunologia , Proteínas de Fase Aguda/metabolismo , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Membrana Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Interleucina-6/fisiologia , Camundongos , Proteína Amiloide A Sérica/imunologia , Proteína Amiloide A Sérica/farmacologia , Staphylococcus aureus/citologia , Staphylococcus aureus/ultraestruturaRESUMO
Prions are lipidated proteins that interact with endogenous lipids and metal ions. They also assemble into multimers and propagate into the infectious scrapie form known as PrPSc The high-resolution structure of the infectious PrPSc state remains unknown, and its analysis largely relies on detergent-based preparations devoid of endogenous ligands. Here we designed polymers that allow isolation of endogenous membrane:protein assemblies in native nanodiscs without exposure to conventional detergents that destabilize protein structures and induce fibrillization. A set of styrene-maleic acid (SMA) polymers including a methylamine derivative facilitated gentle release of the infectious complexes for resolution of multimers, and a thiol-containing version promoted crystallization. Polymer extraction from brain homogenates from Syrian hamsters infected with Hyper prions and WT mice infected with Rocky Mountain Laboratories prions yielded infectious prion nanoparticles including oligomers and microfilaments bound to lipid vesicles. Lipid analysis revealed the brain phospholipids that associate with prion protofilaments, as well as those that are specifically enriched in prion assemblies captured by the methylamine-modified copolymer. A comparison of the infectivity of PrPSc attached to SMA lipid particles in mice and hamsters indicated that these amphipathic polymers offer a valuable tool for high-yield production of intact, detergent-free prions that retain in vivo activity. This native prion isolation method provides an avenue for producing relevant prion:lipid targets and potentially other proteins that form multimeric assemblies and fibrils on membranes.
Assuntos
Encéfalo/metabolismo , Lipídeos/química , Maleatos/química , Nanoestruturas/química , Poliestirenos/química , Proteínas Priônicas/metabolismo , Animais , Cricetinae , Maleatos/síntese química , Maleatos/metabolismo , Metilaminas/química , Camundongos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Poliestirenos/síntese química , Poliestirenos/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/isolamento & purificação , Compostos de Sulfidrila/químicaRESUMO
Membrane lipids are essential participants in cellular events, but only a small number of lipid-interacting proteins have been characterized. Taking advantage of the small genome (~270 genes) of the vaccinia virus, we screened for soluble lipid-binding proteins and found 27 proteins to be soluble after expression in Escherichia coli. Among them, 4 proteins were found to strongly bind to the total bovine brain lipid extract (Folch I fraction) that contained large amounts of phosphatidylserine in vitro. Out of the 4 proteins, 3 were unique proteins to viruses. Another protein, K1, solely contained an ankyrin repeat domain (ARD). ARD is conserved in large numbers of proteins in bacteria, archaea, eukaryotes and viruses, suggesting the possibilities of the membrane binding of ARDs in varieties of proteins. Furthermore, K1 deformed the lipid membrane dependently on the charged lipids. The tubulation and membrane binding was enhanced with increased negative membrane charge from phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ). The basic amino acid residues in the ARD were essential for membrane deformation, suggesting electrostatic interactions between K1 and the membrane for membrane deformation.
Assuntos
Lipídeos de Membrana/química , Proteínas Virais/química , Repetição de Anquirina , Sítios de Ligação , Células HeLa , Humanos , Eletricidade Estática , Células Tumorais CultivadasRESUMO
In this chapter, we show the visualization of lipid domains using a specific lipid-binding protein and super-resolution microscopy. Lipid rafts are plasma membrane domains enriched in both sphingolipids and sterols that play key roles in various physiological events. We identified a novel protein that specifically binds to a complex of sphingomyelin (SM) and cholesterol (Chol). The isolated protein, nakanori, labels the SM/Chol complex at the outer leaflet of the plasma membrane in mammalian cells. Structured illumination microscopic images suggested that the influenza virus buds from the edges of the SM/Chol domains in MDCK cells. Furthermore, a photoactivated localization microscopy analysis indicated that the SM/Chol complex forms domains in the outer leaflet, just above the phosphatidylinositol 4,5-bisphosphate domains in the inner leaflet. These observations provide significant insight into the structure and function of lipid rafts.
Assuntos
Microscopia , Esfingomielinas , Animais , Membrana Celular , Colesterol , Microdomínios da MembranaRESUMO
Formation of membrane pores/channels regulates various cellular processes, such as necroptosis or stem cell niche signaling. However, the roles of membrane lipids in the formation of pores and their biological functions are largely unknown. Here, using the cellular stress model evoked by the sphingolipid analog drug FTY720, we show that formation of ceramide-enriched membrane pores, referred to here as ceramidosomes, is initiated by a receptor-interacting Ser/Thr kinase 1 (RIPK1)-ceramide complex transported to the plasma membrane by nonmuscle myosin IIA-dependent trafficking in human lung cancer cells. Molecular modeling/simulation coupled with site-directed mutagenesis revealed that Asp147 or Asn169 of RIPK1 are key for ceramide binding and that Arg258 or Leu293 residues are involved in the myosin IIA interaction, leading to ceramidosome formation and necroptosis. Moreover, generation of ceramidosomes independently of any external drug/stress stimuli was also detected in the plasma membrane of germ line stem cells in ovaries during the early stages of oogenesis in Drosophila melanogaster Inhibition of ceramidosome formation via myosin IIA silencing limited germ line stem cell signaling and abrogated oogenesis. In conclusion, our findings indicate that the RIPK1-ceramide complex forms large membrane pores we named ceramidosomes. They further suggest that, in addition to their roles in stress-mediated necroptosis, these ceramide-enriched pores also regulate membrane integrity and signaling and might also play a role in D. melanogaster ovary development.