Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35335957

RESUMO

Cationic liposomes are attractive carriers for mRNA delivery. Here, mRNA lipoplexes (LX) were prepared with the cationic lipids α-aminolipophosphonate (3b) or imidazolium lipophosphoramidate (2) associated with various α-aminolipophosphonates co-lipids comprising protonable groups (imidazole or pyridine) and DOPE. Physicochemical parameters of liposomes and their membrane fusion activity were measured. LXs comprising either 3b- or 2- allowed transfection of ~25% and 40% of dendritic cells with low cytotoxicity, respectively; the efficiency increased up to 80% when 2 was combined with the imidazole-based co-lipid 1. The transfections were high with 3b/1, 3b/DOPE, 2/1 and 2/DOPE LXs. We observed that the transfection level was not well correlated with the acid-mediated membrane fusion activity of liposomes supposed to destabilize endosomes. The mRNA release from LXs and its translation capacity after release were studied for the most efficient LXs. The results showed that the more mRNA was condensed, the poorer the translation efficiency after release was. In contrast to DNA, circular dichroism performed on mRNA complexed with 2/DOPE revealed the presence of denatured mRNA in LXs explaining this lack of translation efficiency. This is an important parameter that should be stressed for the preparation of mRNA LXs with a conserved mRNA translation activity.

2.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497165

RESUMO

The goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells. Lipofection of these cells using Syn1-based liposome was poorly efficient most likely because the differentiated HepaRG™ cells are highly quiescent. Thus, we engineered the differentiated HepaRG™ Mitogenic medium supplement (ADD1001) that triggered robust proliferation of differentiated cells. Importantly, we characterized the phenotypical changes occurring during proliferation of differentiated HepaRG™ cells and demonstrated that mitogenic stimulation induced a partial and transient decrease in the expression levels of some liver specific functions followed by a fast recovery of the full differentiation status upon removal of the mitogens. Taking advantage of the proliferation of HepaRG™ cells, we defined lipofection conditions using Syn1-based liposomes allowing transient expression of the cytochrome P450 2D6, a phase I enzyme poorly expressed in HepaRG cells, which opens new means for drug metabolism studies in HepaRG™ cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Lipossomos , Citocromo P-450 CYP2D6/genética , Transfecção , Diferenciação Celular/fisiologia , Carcinoma Hepatocelular/genética , Cátions
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa