Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074793

RESUMO

Liquid crystal displays (LCDs) have profoundly shaped the lifestyle of humans. However, despite extensive use, their impacts on indoor air quality are unknown. Here, we perform flow cell experiments on three different LCDs, including a new computer monitor, a used laptop, and a new television, to investigate whether their screens can emit air constituents. We found that more than 30 volatile organic compounds (VOCs) were emitted from LCD screens, with a total screen area-normalized emission rate of up to (8.25 ± 0.90) × 109 molecules ⋅ s-1 ⋅ cm-2 In addition to VOCs, 10 liquid crystal monomers (LCMs), a commercial chemical widely used in LCDs, were also observed to be released from those LCD screens. The structural identification of VOCs is based on a "building block" hypothesis (i.e., the screen-emitted VOCs originate from the "building block chemicals" used in the manufacturing of liquid crystals), which are the key components of LCD screens. The identification of LCMs is based upon the detailed information of 362 currently produced LCMs. The emission rates of VOCs and LCMs increased by up to a factor of 9, with an increase of indoor air humidity from 23 to 58% due to water-organic interactions likely facilitating the diffusion rates of organics. These findings indicate that LCD screens are a potentially important source for indoor VOCs that has not been considered previously.


Assuntos
Poluentes Atmosféricos/química , Cristais Líquidos/química , Compostos Orgânicos Voláteis/química , Poluição do Ar em Ambientes Fechados
2.
Proc Natl Acad Sci U S A ; 116(52): 26450-26458, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818946

RESUMO

Liquid crystal monomers (LCMs) are used widely in liquid crystal displays (LCDs), which are dramatically changing the world due to the provision of convenient communication. However, there are essentially no published reports on the fate and/or effects of LCMs in the environment. Of 362 currently produced LCMs, 87 were identified as persistent and bioaccumulative (P&B) chemicals, which indicated that these chemicals would exhibit resistance to degradation and exhibit mobility after entering the environment. Following exposure to mixtures of LCM collected from 6 LCD devices, significant modulation of 5 genes, CYP1A4, PDK4, FGF19, LBFABP, and THRSP, was observed in vitro. Modulation of expressions of mRNAs coding for these genes has frequently been reported for toxic (T) persistent organic pollutants (POPs). In LCM mixtures, 33 individual LCMs were identified by use of mass spectrometry and screened for in 53 samples of dust from indoor environments. LCMs were detectable in 47% of analyzed samples, and 17 of the 33 LCMs were detectable in at least 1 sample of dust. Based on chemical properties, including P&B&T of LCMs and their ubiquitous detection in dust samples, the initial screening information suggests a need for studies to determine status and trends in concentrations of LCMs in various environmental matrices as well as tissues of humans and wildlife. There is also a need for more comprehensive in vivo studies to determine toxic effects and potencies of LCMs during chronic, sublethal exposures.

3.
Resour Conserv Recycl ; 157: 104772, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32494109

RESUMO

Currently, in the European Union (EU), e-waste chain performance is assessed by technical indicators that aim to ensure system compliance with collection and recovery targets set by the WEEE Directive. This study proposes indicators to improve WEEE flow monitoring beyond the current overall weight-based approach, including complementary flows and treatment performance. A case study focused on the screen category in France is presented. In 2017, the collection rate of cathode-ray tube screens (CRT) was 68%, while for flat panel display (FPD) generated only 14% was collected. CRT screens have less precious and critical materials than FDP. Thus, elements like cobalt and gold highly concentrated in FPD, have a collection rate two to four times lower than elements such as copper (37%) which represents a high proportion in CRTs. Recycling is the main treatment in France. Nevertheless, the recycling rate per element varies significantly due to the low collection, and also the lack of technology and/or secondary raw materials market. The elements with higher recycling rates are base metals such as copper (28%), followed by precious metals like silver (23%), and gold (13%). Except for palladium, the recycling rate of the critical raw materials targeted in the study ranged from 6% (cobalt) to 0% (e.g. neodymium and indium). The results stress the need for indicators to support the development of WEEE chain from waste management to secondary (critical) raw materials suppliers.

4.
Tohoku J Exp Med ; 248(3): 143-150, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31257311

RESUMO

Indium is mainly used as indium-tin oxide (ITO), which has a unique character of transparency, and is a requisite in making liquid crystal displays. Pulmonary toxicity of indium compounds in humans were not recognized until the last 2 decades. Several initial human cases of indium-related lung disease, named indium lung, were reported in Japan, with their main pathologic findings being interstitial pneumonia, emphysema and cholesterol crystals-containing granulomas. In 2010, three cases with alveolar proteinosis were reported from the United States and China. As of March 2019, more than 10 cases of interstitial pneumonia-dominant indium lung have been reported. Cross-sectional studies in indium workers indicate that the serum indium concentration (sIn) is closely related to the exposure period, the extent of interstitial as well as emphysematous changes of the lung on high-resolution computed tomography (HRCT) and serum biomarkers of interstitial pneumonia, including KL-6 and surfactant protein-D (SP-D). Longitudinal studies have shown it is possible to reduce the sIn as well as the interstitial shadows on HRCT; however, emphysematous lesions increased progressively in heavily exposed workers, even after cessation of exposure. Early detection is required to prevent irreversible changes. The first case of lung cancer associated with indium lung developed in a nonsmoking ex-worker. He had been diagnosed with indium lung and stopped working in indium processing 17 years before. This suggested there is a need for appropriate screening to detect for complications of lung cancer at early stages for those with indium lung.


Assuntos
Índio/efeitos adversos , Pneumopatias/prevenção & controle , Pneumopatias/fisiopatologia , Pulmão/fisiopatologia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/etiologia , Controle Social Formal , Local de Trabalho
5.
J Appl Clin Med Phys ; 18(2): 170-175, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28300388

RESUMO

The purpose of this work was to perform the initial evaluation of primary diagnostic monitor (PDM) characteristics following the implementation of New York City quality assurance (NYC QA) regulations on January 1, 2016, and compare the results of the QA measurements performed by an external photometer and the PDM manufacturer's built-in photometer. TG-18 and Society of Motion Picture and Television Engineers test patterns were used to evaluate monitor performance. Overall, 79 PDMs were included in the analysis. The verification of grayscale standard display function (GSDF) calibration, using a built-in photometer, showed that only 2 out of 79 PDMs failed calibration. However, the same measurements performed by the external luminance meter showed that 15 out of 79 monitors had failed GSDF calibration. Measurements of the PDMs maximum luminance (Lmax ), using an external photometer showed that 10 out of 53 PDMs calibrated for Lmax = 400 cd/m2 and 17 out of 26 PDMs calibrated for Lmax = 500 cd/m2 do not meet the manufacturer's recommended 10% tolerance limit for the target Lmax calibration. Two PDMs did not pass the Lmax ≥ 350 cd/m2 NYC QA regulations with Lmax = 331 cd/m2 and Lmax = 340 cd/m2 . All tested PDMs exceeded the minimum luminance ratio (LR) of 250:1 as required by NYC QA regulations. Measurements taken of Lmax and LR performed by a built-in photometer showed that none of the PDMs had failed the NYC QA regulations. All PDMs passed the luminance uniformity test with a maximum nonuniformity of 17% (according to NYC regulations it must be less than 30%). The luminance uniformity test could only be performed using an external photometer. The evaluation of 79 PDMs of various ages and models demonstrated up to 18% disagreement between luminance measurements performed by the manufacturer's built-in photometer when compared with those performed by an externally calibrated luminance meter. These disagreements were larger for older PDMs.


Assuntos
Diagnóstico por Imagem/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Fotometria/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Calibragem , Humanos , Medições Luminescentes , Padrões de Referência
6.
Chemosphere ; 352: 141408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336041

RESUMO

Waste liquid crystal displays (LCDs) are one of the most substantial and rapidly growing e-waste streams that contain a notable amount of critical, precious, and toxic elements. This study presented a novel thermal-biological hybrid method for resource recovery from waste LCDs. Through the design of a multistage thermal treatment process with the addition of optimized 20 wt% B2O3 to waste, the LCD's glass structure was separated into two interconnected phases, resulting in the transfer of metals from the LCD's glass phase to the B2O3 phase that can solubilize in the acid solution. Following the thermal treatment step, the biometabolites of Aspergillus niger were used for bioleaching of In, Sr, Al, and As from the obtained thermally treated product. The optimal bioleaching parameters were a pulp density of 10 g/L, temperature of 70 °C, and leaching time of 2 days, which led to the highest extraction of 82.6% Al, 70.8% As, 64.5% In, and 36.2% Sr from thermally treated LCD waste, representing a multifold increase in Al, As, and Sr extraction levels compared to untreated waste. This study demonstrated that the proposed hybrid method could successfully overcome waste complexities and ensure effective element extraction from discarded LCDs.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Metaloides , Cristais Líquidos/química , Índio/química , Resíduo Eletrônico/análise , Reciclagem/métodos
7.
J Hazard Mater ; 469: 134013, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522200

RESUMO

Given the criticality of indium (In) in high-tech applications, spent LCD screens can represent a viable secondary In resource. In this work, an innovative and alternative technology to selectively leach In from spent LCD screens using a microbial chelating agent, desferrioxamine E (DFOE), was developed. Indium was concentrated from spent LCD screens by implementing an adapted pre-treatment procedure, allowing the isolation of an indium-rich glassy fraction. During leaching, the competition between aluminum (Al) and In for complexation with DFOE leads to the precipitation of In(OH)3 at low DFOE concentrations (12-240 µM). After adjusting the optimal conditions (fraction size: 0-36 µM, pH: 5.5, S/L ratio: 1 g/L, 25 °C), the In leaching yield reached 32%, ten times higher than Al over 90 days with 5 mM DFOE. Thus, achieving high In recovery is possible through i) prolonging leaching durations, ii) selective leaching, and iii) minimizing Al interference. This is the first attempt to selectively leach In using a selected siderophore from end-of-life products with high concentrations of non-targeted elements (i.e. Al, Si, and Ca). This study demonstrates the potential of generating indium-rich leachates, which can be subsequently processed through the GaLIophore technology for In refining.

8.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998400

RESUMO

Here we present the cascade converter (CC), which provides real-time imaging of ionizing radiation (IoR) distribution. It was designed and manufactured with the simplest architecture, utilizing liquid crystal display (LCD) technology. Based on two merged substrates with transparent electrodes, armed with functional layers, with the cell filled with nematic liquid crystal, a display-like, IoR-stimulated CC was achieved. The CC comprises low-absorbing polymer substrates (made of polyethylene terephthalate-PET) armed with a transparent ITO electrode covered with a thin semipermeable membrane of polymer (biphenylperfluorocyclobutyl: BP-PFCB) doped with functional nanoparticles (NPs) of Lu2O3:Eu. This stack was covered with a photoconductive layer of α-Se and finally with a thin polyimide (PI) layer for liquid crystal alignment. The opposite substrate was made of LCD-type glass with ITO and polyimide aligning layers. Both substrates form a cell with a twisted structure of nematic liquid crystal (TN) driven with an effective electric field Eeff. An effective electric field driving TN structure is generated with a sum of (1) a bias voltage VBIAS applied to ITO transparent electrodes and (2) the photogenerated additional voltage VXray induced between ITO and α-Se layers with a NPs-doped BP-PFCB polymer layer in-between. The IoR (here, X-ray) conversion into real imaging of the IoR distribution was achieved in the following stages: (1) conversion of IoR distribution into non-ionizing red light emitted with functional NPs, (2) transformation of red light into an electric charge distributed in a layer of the photoconductive α-Se, which is what results in the generation of distributed voltage VXray, and (3) a voltage-mediated, distributed switching of the TN structure observed with the naked eye. The presented imaging device is characterized by a simple structure and a simple manufacturing process, with the potential for use as a portable element of IoR detection and as a dosimeter.

9.
Micromachines (Basel) ; 15(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398991

RESUMO

Flat panel displays are electronic displays that are thin and lightweight, making them ideal for use in a wide range of applications, from televisions and computer monitors to mobile devices and digital signage. The Thin-Film Transistor (TFT) layer is responsible for controlling the amount of light that passes through each pixel and is located behind the liquid crystal layer, enabling precise image control and high-quality display. As one of the important parameters to evaluate the display performance, the faster response time provides more frames in a second, which benefits many high-end applications, such as applications for playing games and watching movies. To further improve the response time, the single-pixel charging efficiency is investigated in this paper by optimizing the TFT dimensions in gate driver circuits in active-matrix liquid crystal displays. The accurate circuit simulation model is developed to minimize the signal's fall time (Tf) by optimizing the TFT width-to-length ratio. Our results show that using a driving TFT width of 6790 µm and a reset TFT width of 640 µm resulted in a minimum Tf of 2.6572 µs, corresponding to a maximum pixel charging ratio of 90.61275%. These findings demonstrate the effectiveness of our optimization strategy in enhancing pixel charging efficiency and improving display performance.

10.
Radiol Phys Technol ; 15(2): 147-155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462583

RESUMO

To determine the optimal display conditions for ultra-high-resolution computed tomography (UHRCT) images in clinical practice, this study investigated the effects of liquid-crystal display (LCD) resolution and displayed image size on the spatial resolution of phantom images acquired using a UHRCT system. A phantom designed to evaluate the high-contrast resolution was scanned. The scan data were reconstructed into four types of UHRCT image series consisting of the following possible combinations: two types of reconstruction kernels on the filtered back-projection method (for the lung and mediastinum) and two types of matrix sizes (10242 and 20482). These images were displayed under eight types of display conditions: three image sizes displayed on a 2-megapixel (MP) and 3-MP color LCD and two image sizes on an 8-MP color LCD. A total of 32 samples (four image series × eight display conditions) were evaluated by eight observers for high-contrast resolution. The high-contrast resolution of the displayed UHRCT images was significantly affected by the displayed image size, although the largest (full-screen) displayed image size did not necessarily show the maximum high-contrast resolution. When the images were displayed in the full-screen size, LCD resolution affected the high-contrast resolution of only the 20482-matrix-size images reconstructed using the lung kernel. In conclusion, the spatial resolution of UHRCT images may be affected by LCD resolution and displayed image size. To optimize the clinical display conditions for UHRCT images, it is necessary to adopt an LCD with an adequate resolution for each viewing situation.


Assuntos
Cristais Líquidos , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Cintilografia , Tomografia Computadorizada por Raios X/métodos
11.
Chemosphere ; 280: 130905, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162103

RESUMO

Indium recovery from spent liquid crystal displays (LCDs) of monitors was studied by using microwave pyrolysis as a pretreatment step prior to hydrometallurgical processes including acid leaching, solvent extraction, and stripping. After microwave pyrolysis at 150 W for a processing time of 50 min, the hydrometallurgical processes were carried out to sequentially solubilize and increase the purity of indium ions in the product solution. The leaching efficiency of indium was approximately 98% when using 0.5 M of sulfuric acid at a solid-to-liquid ratio (S/L) of 0.1 g/mL. Afterwards, the indium ions in the leachate were extracted by using 20% di(2-ethylhexyl)phosphoric acid (D2EHPA) in kerosene. The purity of indium ions in the organic phase was approximately 87% at an oil-to-aqueous ratio (O/A) of 1/10. Finally, the indium ions in the extract were stripped by using 6 M of hydrochloric acid at an O/A ratio of 10/1. The purity of indium ions in the aqueous phase was as high as 99.98%. The final recovery rate of indium from spent LCDs was approximately 75%, substantially higher than those that were obtained by using shredding or grinding pretreatment. The maximum processing capacity of microwave pyrolysis of spent LCDs could be approximately 500 g, which means that it would only need 0.5 kWh of electricity for the microwave pyrolysis of 1 kg of spent LCDs. According to the experimental results and advantages, it can be concluded that microwave pyrolysis is an effective technique for the pretreatment of spent LCDs.


Assuntos
Índio , Cristais Líquidos , Micro-Ondas , Pirólise , Reciclagem
12.
Polymers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224861

RESUMO

The methods to enhance contrast ratios (CRs) in scattering-type transflective liquid crystal displays (ST-TRLCDs) based on polymer-network liquid crystal (PNLC) cells are investigated. Two configurations of ST-TRLCDs are studied and are compared with the common ST-TRLCDs. According to the comparisons, CRs are effectively enhanced by assembling a linear polarizer at the suitable position to achieve better dark states in the transmissive and reflective modes of the reported ST-TRLCDs with the optimized configuration, and its main trade-off is the loss of brightness in the reflective modes. The PNLC cell, which works as an electrically switchable polarizer herein, can be a PN-90° twisted nematic LC (PN-90° TNLC) cell or a homogeneous PNLC (H-PNLC) cell. The optoelectric properties of PN-90° TNLC and those of H-PNLC cells are compared in detail, and the results determine that the ST-TRLCD with the optimized configuration using an H-PNLC cell can achieve the highest CR. Moreover, no quarter-wave plate is used in the ST-TRLCD with the optimized configuration, so a parallax problem caused by QWPs can be solved. Other methods for enhancing the CRs of the ST-TRLCDs are also discussed.

13.
Int J Mol Sci ; 10(11): 5031-53, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20087476

RESUMO

Polyimides having dendritic side chains were investigated. The terphenylene diamine monomer having a first-generation monodendron, 3,4,5-tris(n-dodecyloxy)-benzoate and the monomer having a second-generation monodendron, 3,4,5-tris[-3',4',5'-tri(n-dodecyloxy)benzyloxy]benzoate were successfully synthesized and the corresponding soluble dendritic polyimides were obtained by polycondensation with conventional tetracarboxylic dianhydride monomers such as benzophenone tertracarboxylic dianhydride (BTDA). The two-step polymerizations in NMP that is a general method for the synthesis of soluble polyimides is difficult; however, the expected dendritic polyimides can be obtained in aromatic polar solvents such as m-cresol and pyridine. The solubility of these dendoronized polyimides is characteristic; soluble in common organic solvents such as dichloromethane, chloroform, toluene and THF. These dendronized polyimides exhibited high glass transition temperatures and good thermal stability in both air and under nitrogen. Their application as alignment layers for LCDs was investigated, and it was found that these polyimides having dendritic side chains were applicable for the vertically aligned nematic liquid crystal displays (VAN-LCDs).


Assuntos
Imidas/química , Polímeros/química , Diaminas/química , Cristais Líquidos/química , Polimerização , Polímeros/síntese química
14.
Adv Sci (Weinh) ; 6(22): 1901345, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763144

RESUMO

Herein, emerging applications of luminescent semiconductor nanocrystals are addressed, such as quantum dots and quantum rods as down-conversion materials used in liquid crystal displays (LCD). Their precisely tunable emission wavelengths and narrow emission bandwidths offer high color purity resulting in a wide color gamut with vivid colors for LCDs. Anisotropic materials, such as quantum rods, have the additional advantage of polarized emission, which can bring a significant improvement to the efficiency of LCD displays. The basic optical properties of these nanomaterials are considered, with a focus on quantum rods, and the challenges and progress in their assembly are discussed. Different techniques for quantum rod alignment are introduced such as shear-oriented, electric field and magnetic field assisted assembly, mechanical rubbing, stretching, and electrospinning. The photoalignment approach allows for an easy arrangement of quantum rods in-plane, and the implications of this method to patterning are considered. Different configurations of LCDs utilizing semiconductor quantum dots and quantum rods as down-conversion layers are also presented, and the potential applications that are enabled by the wide range of emerging materials are highlighted.

15.
ACS Appl Mater Interfaces ; 11(16): 15141-15151, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30938155

RESUMO

High-quality alignment control of liquid crystals (LCs) for ultrahigh-definition large-sized display is a challenging task. A conventional rubbing method has obvious limitations for fabricating large-sized displays with a small pixel size and an uneven inner surface. To comply with the current trend, we propose a simple and reliable polyimide-less in situ photoalignment. It was achieved using a visible-light-sensitive azo-dye and a mesogenic acrylate, both doped to host LCs. Without using a pretreated alignment layer, mono- and multidomain uniaxial alignments of LC molecules were induced by linearly polarized visible light (LPVL) and subsequently stabilized by unpolarized UV-light irradiation. The stepwise process was monitored by adopting a fluorescent indicator. By loading the mixture into a confined cell, azo-dyes were spontaneously adsorbed at inner surfaces of the cell, whereas reactive mesogens (RMs) were homogeneously dissolved in an LC host. The molecular orientational anisotropy of dyes at the surface, induced by LPVL, aligned the LC director perpendicular to the polarization direction. Upon the second step, UV-irradiation, the RMs in an LC host were photopolymerized into thin interfacial layers, stabilizing the aligned LC director. The overlaid cross-linked RM layers secured a thermal and a radiative stability of LC alignment. The RM layers completely screened the effect of azo-dyes, which can be easily randomized by heat and irradiation. The interfacial RM layer functioned as a permanently stable alignment layer. It provided sufficient azimuthal anchoring strength together with heat and light stabilities, which are essential for practical applications. Such sequential interfacial modifications through dual-wavelength processes can completely avoid interference between forming alignment and stabilization layers, inevitable if the same wavelength light is used. The proposed method provides a simple fabrication process and reliable alignment characteristics by employing effective in situ photoalignment and without using a traditional alignment layer. Therefore, it meets a current trend in the display market toward ultrahigh-resolution and large-area displays.

16.
Waste Manag ; 87: 51-61, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109551

RESUMO

Over the last years, emerging incentives for secondary production of high tech-metals, found in e-waste, are created because of their increasing demand and economic issues associated with their primary production. Due to the very low share of these metals in e-waste, pre-treatment methods can result in an output fraction rich in the metals of interest and may, therefore, be essential. To this scope, the present article evaluates and compares the efficiency of four different pre-treatment approaches containing various steps for recovering indium (In) from liquid crystal displays (LCDs) in laptop computers. The pre-treatment steps, used in various combinations, are (a) dry mechanical crushing and sieving, (b) pyrolysis, (c) thermal shock and (d) gravimetric process. Also, in all approaches, liquid crystals were removed from the samples, before applying the mechanical crushing step, as these are toxic and potentially harmful to human health and the environment. The removal was achieved by ultrasonic irradiation or mild agitation and optimized in terms of time, temperature and solvent type and concentration. Then, the feasibility of each pre-treatment approach was evaluated based on two parameters: (a) the content of In in the resulting sample after pre-treatment and (b) the separated mass share (%) with larger indium content as compared to the original LCD panel. The results showed that In is highly liberated in the fractions consisting of finest particles (<25 µm and <53 µm) after dry mechanical crushing and sieving with a maximum content of 234 mg/kg, which is twice as much as in the raw material. However, these particles represented only about 14 wt% of the original LCD panel mass. On the contrary, thermal shock results indicated that this was the most efficient pre-treatment approach, as both the content of In and the separated LCD mass (%) remained in high levels. Finally, some economic aspects associated with the processes are presented.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Índio , Reciclagem , Ultrassom
17.
Materials (Basel) ; 12(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514361

RESUMO

The paper presents the possibility of using the liquid crystal display (LCD) waste as a partial substitute of fine aggregate. Concretes with two types of cement, CEM I 42.5 R and CEM II/B-S 42.5 N, with and without LCD addition, were investigated. The properties that influence the structures exposed to severe environments were examined. The results and analyses pertaining to their micro-structure, including interfacial transition zone (ITZ), were presented as well. All concretes exhibited good freeze-thaw (F-T) resistance after 150 F-T cycles. The water-tightness was established as 0.8 MPa. All concretes both with and without LCD achieved the same class C50/60.

18.
Sci Total Environ ; 655: 781-786, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30481705

RESUMO

Currently, a large amount of discarded liquid crystal displays (LCDs) are being produced, and the improper treatment of discarded LCDs causes serious environmental pollution problems. Indium is the most valuable metal in LCDs and is present in such devices at a concentration of over 0.025%. In this study, the bioleaching of indium from end-of-life LCD panels was comprehensively investigated through three methods: S-mediated pathway, Fe-mediated pathway and Mixed pathway of S- and Fe-mediated, which yielded maximum bioleaching efficiencies of approximately 100%, 0% and 78%, respectively. Microbial community analysis showed that the dominant functional bacteria under the S-mediated pathway were Acidithiobacillus. The Acidithiobacillus genus catalysed the leaching of indium, which was mainly achieved by indirect bioleaching. In addition, the microorganisms can secrete enzymes and extracellular polymeric substances, which also contributed to the leaching of indium. Therefore, this work provides an economical and efficient biological method for future research and practical applications in indium recovery from solid waste.


Assuntos
Resíduo Eletrônico/análise , Índio/metabolismo , Cristais Líquidos/microbiologia , Microbiota/fisiologia , Reciclagem/métodos , Eliminação de Resíduos/métodos , Biodegradação Ambiental , Catálise , Índio/química , Cristais Líquidos/química , Microbiota/genética , Modelos Biológicos
19.
Sci Total Environ ; 693: 133654, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31635002

RESUMO

Smartphones have become an integral tool of society; in the year 2017, approximately 30% of the global population used smartphones. After their life cycle of use, most smartphones are not recycled and are instead discarded as e-waste, which increases the probability that chemicals they contain will eventually be released into the natural environment. In this study, the concentration and distribution of 52 major flame retardant (FR) chemicals were measured in eight components of seven models of largely produced smartphones. The results demonstrated that organophosphate esters (OPEs) were the principal FRs in these smartphone devices, while a suite of halogenated flame retardants (HFRs), including 25 polybrominated diphenyl ethers (PBDEs), were not detected. Triphenyl phosphate (TPHP) was the primary FR in the smartphones, followed by tris(2-butoxyethyl) phosphate (TBOEP), 2-ethylhexyl diphenyl phosphate (EHDPP), triethyl phosphate (TEP), tris(2-chloroethyl) phosphate (TCEP), and tris(2-chloroisopropyl) phosphate (TCIPP), respectively. The average smartphone contained 3.37 × 107 ng TPHP/unit, which was concentrated in the phone screen. We estimated the annual amount of ΣOPEs and TPHP in smartphones used globally to be 53.5 and 51.8 tons, respectively. Extracts of phone screens were further analyzed by use of an untargeted screening strategy, and other 10 organic chemicals were identified. Interestingly, 3 out of them shared similar backbone structure of TPHP, and these 3 chemicals were tri(2,4-di-t-butylphenyl) phosphate (TDTBPP; CAS No. 95906-11-9), 2-biphenylol diphenyl phosphate (BPDPP; 132-29-6), and tris (2-biphenyl) phosphate (TBPHP; 132-28-5). Collectively, this study provided the first information on distribution of major FRs in different components of smartphones, and also identified other 10 current-use organic chemicals including three novel aryl OPEs which should be considered in further environmental studies including in toxicological and monitoring programs.

20.
Adv Mater ; 31(10): e1807751, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30633403

RESUMO

Functional soft materials exhibiting distinct functionalities in response to a specific stimulus are highly desirable towards the fabrication of advanced devices with superior dynamic performances. Herein, two novel light-driven chiral fluorescent molecular switches have been designed and synthesized that are able to exhibit unprecedented reversible Z/E photoisomerization behavior along with tunable fluorescence intensity in both isotropic and anisotropic media. Cholesteric liquid crystals fabricated using these new fluorescent molecular switches as chiral dopants exhibit reversible reflection color tuning spanning the visible and infrared region of the spectrum. Transparent display devices have been fabricated using both low chirality and high chirality cholesteric films that operate either exclusively in fluorescent mode or in both fluorescent and reflection mode, respectively. The dual mode display device employing short pitch cholesteric film is able to function on demand under all ambient light conditions including daylight and darkness with fast response and high resolution. Moreover, the proof-of-concept for a "remote-writing board" using cholesteric films containing one of the light-driven chiral fluorescent molecular switches with ease of fabrication and operation is disclosed herein. Such optically rewritable transparent display devices enabled by light-driven chiral fluorescent molecular switches pave a new way for developing novel display technology under different lighting conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa