Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2316564121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38527200

RESUMO

Sulfur in nature consists of two abundant stable isotopes, with two more neutrons in the heavy one (34S) than in the light one (32S). The two isotopes show similar physicochemical properties and are usually considered an integral system for chemical research in various fields. In this work, a model study based on a Li-S battery was performed to reveal the variation between the electrochemical properties of the two S isotopes. Provided with the same octatomic ring structure, the cyclo-34S8 molecules form stronger S-S bonds than cyclo-32S8 and are more prone to react with Li. The soluble Li polysulfides generated by the Li-34S conversion reaction show a stronger cation-solvent interaction yet a weaker cation-anion interaction than the 32S-based counterparts, which facilitates quick solvation of polysulfides yet hinders their migration from the cathode to the anode. Consequently, the Li-34S cell shows improved cathode reaction kinetics at the solid-liquid interface and inhibited shuttle of polysulfides through the electrolyte so that it demonstrates better cycling performance than the Li-32S cell. Based on the varied shuttle kinetics of the isotopic-S-based polysulfides, an electrochemical separation method for 34S/32S isotope is proposed, which enables a notably higher separation factor than the conventional separation methods via chemical exchange or distillation and brings opportunities to low-cost manufacture, utilization, and research of heavy chalcogen isotopes.

2.
Proc Natl Acad Sci U S A ; 120(15): e2300197120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018192

RESUMO

Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li+ conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li+ behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li+ conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li+ conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co-O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li+ disassociation and enhances its transference number (tLi+). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm-1 and tLi+ of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium-sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.

3.
Proc Natl Acad Sci U S A ; 119(28): e2200392119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787034

RESUMO

All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L-1). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, -40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 µm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm-2) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at -40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells.

4.
Nano Lett ; 24(1): 486-492, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147568

RESUMO

Regulating ion transport is a prevailing strategy to suppress lithium dendrite growth, in which the distribution of ion regulatory sites plays an important role. Here a hyperbranched polyamidoamine (HBPA) grafted polyethylene (PE) composite separator (HBPA-g-PE) is reported. The densely and uniformly distributed positive -NH2 and negative -CHNO- groups efficiently restrict the anion migration and promote Li+ transport at the surface of the lithium metal anode. The obtained Li foil symmetric cell delivers a stable cycle performance with a low-voltage hysteresis of 130 mV for over 1500 h (3000 cycles) at an ultrahigh current density of 20 mA cm-2 and a practical areal capacity of 5 mAh cm-2. Moreover, HBPA-g-PE separator enables a practical lithium-sulfur battery to achieve over 200-cycle stable performance with initial and retained capacity of 700 and 455 mAh g-1, at a high sulfur loading of 4 mg cm-2 and a low electrolyte content/sulfur loading ratio of 8 µL mg-1.

5.
Small ; 20(8): e2306503, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821397

RESUMO

It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.

6.
Small ; 20(2): e2305283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661577

RESUMO

Increasing the sulfur cathode load is an important method for promoting the commercialization of lithium-sulfur batteries. However, there is a common problem of overcharging in high-loading experiments, which is rarely reported. In this work, it is believed that an insulating layer of S8 forms on the current collector surface, hindering electron exchange with polysulfides. Continuous external current input during layer formation can cause irreversible electrode changes and overcharging. The general solution is to provide nucleation centers with adsorption sites to promote the 3D growth of the insulated S8 , thus avoiding overcharging. In this work,  a solution is proposed by providing nucleation centers by gallium nitrate, by regulating the 3D growth of S8 away from the surface of the current collector to avoid overcharging and by improving battery performance.

7.
Small ; 20(19): e2308550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282057

RESUMO

Lithium-sulfur (Li-S) batteries, which store energy through reversible redox reactions with multiple electron transfers, are seen as one of the promising energy storage systems of the future due to their outstanding advantages. However, the shuttle effect, volume expansion, low conductivity of sulfur cathodes, and uncontrollable dendrite phenomenon of the lithium anodes have hindered the further application of Li-S batteries. In order to solve the problems and clarify the electrochemical reaction mechanism, various types of materials, such as metal compounds and carbon materials, are used in Li-S batteries. Polymers, as a class of inexpensive, lightweight, and electrochemically stable materials, enable the construction of low-cost, high-specific capacity Li-S batteries. Moreover, polymers can be multifunctionalized by obtaining rich structures through molecular design, allowing them to be applied not only in cathodes, but also in binders and solid-state electrolytes to optimize electrochemical performance from multiple perspectives. The most widely used areas related to polymer applications in Li-S batteries, including cathodes and electrolytes, are selected for a comprehensive overview, and the relevant mechanisms of polymer action in different components are discussed. Finally, the prospects for the practical application of polymers in Li-S batteries are presented in terms of advanced characterization and mechanistic analysis.

8.
Small ; 20(23): e2309126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148313

RESUMO

Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates for next-generation energy storage techniques. Sulfurized polyacrylonitrile (SPAN) exhibits competitive advantages in terms of cycle stability, rate performance as well as cost. However, the preparation of high-loading SPAN electrodes is still challenging. Herein, inspired by mussel and cobweb, a high-loading SPAN electrode is enabled by the combination of polydopamine (PDA) coating and a bimodal distributed single-wall carbon nanotubes (SWCNT) slurry dispersed in polyvinylpyrrolidone (PVP), their synergistic effect not only constructs effective electron percolating networks within the electrode but also make high active material (AM) ratio possible. High areal capacity PDA@SPAN electrode (18.40 mAh cm-2 in the initial cycle) with negligible specific capacity attenuation as the mass loading increasement is realized through the facile slurry casting process. The dynamic N─H…O hydrogen bond is formed between PDA and PVP and the electrode integrity during charge/discharge is greatly strengthened. The battery with an areal AM loading of 7.16 mg cm-2 (5.16 mAh cm-2) retains 92.0% of capacity in 80 cycles and 87.18% in 160 cycles, and it also shows stable cycle performances even with a high loading of 19.79 mg cm-2 and lean electrolyte (3.28 µL mg-1).

9.
Small ; 20(25): e2309582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225695

RESUMO

Electrocatalysis is considered to be an effective method to solve the sluggish kinetics of lithium-sulfur batteries. However, a single catalyst cannot simultaneously catalyze multi-step sulfur reductions. And once the catalyst surface is covered by the initially deposited solid products, the subsequent catalytic activity will significantly deteriorate. Here, microporous ZIF-67 and its derivative nano-metallic Co0 are used as dual-catalyst aiming to address these drawbacks. The dual catalytic center effectively cooperates the adsorption and electron transfer for multi-steps of sulfur reductions, transforming the potential-limited step (Li2S4→Li2S2/Li2S) into a thermodynamic spontaneous reaction. ZIF-67 first adsorbs soluble Li2S4 to form a coordination structure of ZIF-Li2S4. Then nano-metallic Co0 attracts uncoordinated S atoms in ZIF-Li2S4 and facilitates the breaking of S-S bonds to form transient reductive ZIF-Li2S2 and Co-S2 via. spontaneous electron transfer. These intermediates facilitate continuous conversion to Li2S with reduced formation energy, which is beneficial to the regeneration of the catalyst. As a result, the cathode with ZIF@CNTs/Co@CNFs synergetic catalyst achieves initial areal capacity of 4.7 mAh cm-2 and maintains 3.5 mAh cm-2 at low electrolyte/sulfur ratio (E/S) of 5 µL mg-1. This study provides valuable guidance for improving the electrochemical performance of lithium-sulfur batteries through catalyst synergistic strategies for multi-step reactions.

10.
Small ; 20(26): e2311343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236167

RESUMO

Although lithium-sulfur (Li-S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li-S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge-discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g-1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g-1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li-S batteries.

11.
Small ; : e2401567, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733220

RESUMO

Lithium-sulfur (Li-S) battery is identified as an ideal candidate for next-generation energy storage systems in consideration of its high theoretical energy density and abundant sulfur resources. However, the shuttling behavior of soluble polysulfides (LiPSs) and their sluggish reaction kinetics severely limit the practical application of the current Li-S battery. In this work, a series of In2O3 nanocubes with different oxygen vacancy concentrations are designed and prepared via a facile self-template method. The introduced oxygen vacancy on In2O3 can effectively rearrange the charge distribution and enhance sulfiphilic property. Moreover, the In2O3 with high oxygen vacancy concentration (H-In2O3) can slightly slow down the solid-liquid conversion process and significantly accelerate the liquid-solid conversion process, thus reducing the accumulation of LiPSs in electrolyte and inhibiting the shuttle effect. Contributed by the unique selective catalytic capability, the prepared H-In2O3 exhibits excellent electrochemical performance when used as sulfur host. For instance, a high reversible capacity of 609 mAh g-1 is obtained with only 0.044% capacity decay per cycle over 1000 cycles at 1.0 C. This work presents a typical example for designing advanced sulfur hosts, which is crucial for the commercialization of Li-S battery.

12.
Small ; 20(2): e2304210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37626458

RESUMO

Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.

13.
Small ; 20(1): e2305161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641192

RESUMO

Single-atom catalysts (SACs) are promising cathode materials for addressing issues faced by lithium-sulfur batteries. Considering the ample chemical space of SACs, high-throughput calculations are efficient strategies for their rational design. However, the high throughput calculations are impeded by the time-consuming determination of the decomposition barrier (Eb ) of Li2 S. In this study, the effects of bond formation and breakage on the kinetics of SAC-catalyzed Li2 S decomposition with g-C3 N4 as the substrate are clarified. Furthermore, a new efficient and easily-obtained descriptor Li─S─Li angle (ALi─S─Li ) of adsorbed Li2 S, different from the widely accepted thermodynamic data for predicting Eb , which breaks the well-known Brønsted-Evans-Polanyi relationship, is identified. Under the guidance of ALi─S─Li , several superior SACs with d- and p-block metal centers supported by g-C3 N4 are screened to accelerate the sulfur redox reaction and fix the soluble lithium polysulfides. The newly identified descriptor of ALi─S─Li can be extended to rationally design SACs for Na─S batteries. This study opens a new pathway for tuning the performance of SACs to catalyze the decomposition of X2 S (X = Li, Na, and K) and thus accelerate the design of SACs for alkaline-chalcogenide batteries.

14.
Small ; 20(1): e2304898, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670213

RESUMO

The commercialization of Li-S batteries as a promising energy system is terribly impeded by the issues of the shuttle effect and Li dendrite. Keggin Al13 -pillared montmorillonite (AlMMT), used as the modified film of the separator together with super-P and poly (vinylidene fluoride) (PVDF), has a good chemical affinity to lithium polysulfide (LiPS) to retard the polysulfide shuttling, excellent electrolyte wettability, and a stable structure, which can improve the rate capability and cycling stability of Li-S batteries. Density function theory (DFT) calculations reveal the strong adsorption ability of AlMMT for LiPS. Consequently, the modified film allows Li-S batteries to reach 902 mAh g-1 at 0.2C after 200 cycles and 625 mAh g-1 at 1C after 1000 cycles. More importantly, a high reversible areal capacity of 4.04 mAh cm-2 can be realized under a high sulfur loading of 6.10 mg cm-2 . Combining the merits of rich resources of montmorillonite, prominent performance, simple operation and cost-effectiveness together, this work exploits a new route for viable Li-S batteries for applications.

15.
Small ; 20(2): e2305508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670540

RESUMO

Single-atom catalysts (SACs) with specific N-coordinated configurations immobilized on the carbon substrates have recently been verified to effectively alleviate the shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur (Li─S) batteries. Herein, a versatile molten salt (KCl/ZnCl2 )-mediated pyrolysis strategy is demonstrated to fabricate Zn SACs composed of well-defined Zn-N4 sites embedded into porous carbon sheets with rich pyridine-N defects (Zn─N/CS). The electrochemical kinetic analysis and theoretical calculations reveal the critical roles of Zn-N4 active sites and surrounding pyridine-N defects in enhancing adsorption toward LiPS intermediates and catalyzing their liquid-solid conversion. It is confirmed by reducing the overpotential of the rate-determining step of Li2 S2 to Li2 S and the energy barrier for Li2 S decomposition, thus the Zn─N/CS guarantees fast redox kinetics between LiPSs and Li2 S products. As a proof of concept demonstration, the assembled Li─S batteries with the Zn─N/CS-based sulfur cathode deliver a high specific capacity of 1132 mAh g-1 at 0.1 C and remarkable capacity retention of 72.2% over 800 cycles at 2 C. Furthermore, a considerable areal capacity of 6.14 mAh cm-2 at 0.2 C can still be released with a high sulfur loading of 7.0 mg cm-2 , highlighting the practical applications of the as-obtained Zn─N/CS cathode in Li─S batteries.

16.
Small ; 20(16): e2307579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044290

RESUMO

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

17.
Small ; 20(13): e2307040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967337

RESUMO

The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.

18.
Small ; 20(3): e2303192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712177

RESUMO

Modulating the electronic configuration of the substrate to achieve the optimal chemisorption toward polysulfides (LiPSs) for boosting polysulfide conversion is a promising way to the efficient Li-S batteries but filled with challenges. Herein, a Co/CoS2 heterostructure is elaborately built to tuning d-orbital electronic structure of CoS2 for a high-performance electrocatalyst. Theoretical simulations first evidence that Co metal as the electron donator can form a built-in electric field with CoS2 and downshift the d-band center, leading to the well-optimized adsorption strength for lithium polysulfides on CoS2 , thus contributing a favorable way for expediting the redox reaction kinetics of LiPSs. As verification of prediction, a Co/CoS2 heterostructure implanted in porous hollow N, S co-doped carbon nanocage (Co/CoS2 @NSC) is designed to realize the electronic configuration regulation and promote the electrochemical performance. Consequently, the batteries assembled with Co/CoS2 @NSC cathode display an outstanding specific capacity and an admirable cycling property as well as a salient property of 8.25 mAh cm-2 under 8.18 mg cm-2 . The DFT calculation also reveals the synergistic effect of N, S co-doping for enhancing polysulfide adsorption as well as the detriment of excessive sulfur doping.

19.
Small ; 20(10): e2306140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875718

RESUMO

The shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely hinder the scalable application of lithium-sulfurr (Li-S) batteries. Herein, the highly dispersed α-phase molybdenum carbide nano-crystallites embedded in a porous nitrogen-doped carbon framework (α-MoC1-x @NCF) are developed via a simple metal-organic frameworks (MOFs) assisted strategy and proposed as the multifunctional separator interlayer for Li-S batteries. The inlaid MoC1-x nanocrystals and in situ doped nitrogen atoms provide a strong chemisorption and outstanding electrocatalytic conversion toward LiPSs, whereas the unique plum-like carbon framework with hierarchical porosity enables fast electron/Li+ transfer and can physically suppress LiPSs shuttling. Benefiting from the synergistic trapping-catalyzing effect of the MoC1-x @NCF interlayer toward LiPSs, the assembled Li-S battery achieves high discharge capacities (1588.1 mAh g-1 at 0.1 C), impressive rate capability (655.8 mAh g-1 at 4.0 C) and ultra-stable lifespan (a low capacity decay of 0.059% per cycle over 650 cycles at 1.0 C). Even at an elevated sulfur loading (6.0 mg cm-2 ) and lean electrolyte (E/S is ≈5.8 µL mg-1 ), the battery can still achieve a superb areal capacity of 5.2 mAh cm-2 . This work affords an effective design strategy for the construction of muti-functional interlayer in advanced Li-S batteries.

20.
Small ; 20(12): e2306991, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939298

RESUMO

The shuttle effect, which causes the loss of active sulfur, passivation of lithium anode, and leads to severe capacity attenuation, is currently the main bottleneck for lithium-sulfur batteries. Recent studies have disclosed that molybdenum compounds possess exceptional advantages as a polar substrate to immobilize and catalyze lithium polysulfide such as high conductivity and strong sulfiphilicity. However, these materials show incomplete contact with sulfur/polysulfides, which causes uneven redox conversion of sulfur and results in poor rate performance. Herein, a new type of 2D nano-channeled molybdenum compounds (2D-MoNx) via the 2D organic-polyoxometalate superstructure for accelerating interfacial polysulfide catalysis toward high-performance lithium-sulfur batteries is reported. The 2D-MoNx shows well-interlinked nano-channels, which increase the reactive interface and contact surface with polysulfides. Therefore, the battery equipped with 2D-MoNx displays a high discharge capacity of 912.7 mAh g-1 at 1 C and the highest capacity retention of 523.7 mAh g-1 after 300 cycles. Even at the rate of 2 C, the capacity retention can be maintained at 526.6 mAh g-1 after 300 cycles. This innovative nano-channel and interfacial design of 2D-MoNx provides new nanostructures to optimize the sulfur redox chemistry and eliminate the shuttle effect of polysulfides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa