Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Cell ; 170(4): 664-677.e11, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802039

RESUMO

The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD+-related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging.


Assuntos
Envelhecimento/metabolismo , Ritmo Circadiano , Fígado/metabolismo , Redes e Vias Metabólicas , Acetilcoenzima A/metabolismo , Acetilação , Envelhecimento/patologia , Animais , Restrição Calórica , Histonas/metabolismo , Fígado/patologia , Camundongos , NAD/metabolismo , Proteínas/metabolismo , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Transcriptoma
2.
J Biol Chem ; 300(6): 107353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723751

RESUMO

Recent genome-wide association studies have identified a missense variant p.A165T in mitochondrial amidoxime-reducing component 1 (mARC1) that is strongly associated with protection from all-cause cirrhosis and improved prognosis in nonalcoholic steatohepatitis. The precise mechanism of this protective effect is unknown. Substitution of alanine 165 with threonine is predicted to affect mARC1 protein stability and to have deleterious effects on its function. To investigate the mechanism, we have generated a knock-in mutant mARC1 A165T and a catalytically dead mutant C273A (as a control) in human hepatoma HepG2 cells, enabling characterization of protein subcellular distribution, stability, and biochemical functions of the mARC1 mutant protein expressed from its endogenous locus. Compared to WT mARC1, we found that the A165T mutant exhibits significant mislocalization outside of its traditional location anchored in the mitochondrial outer membrane and reduces protein stability, resulting in lower basal levels. We evaluated the involvement of the ubiquitin proteasome system in mARC1 A165T degradation and observed increased ubiquitination and faster degradation of the A165T variant. In addition, we have shown that HepG2 cells carrying the MTARC1 p.A165T variant exhibit lower N-reductive activity on exogenously added amidoxime substrates in vitro. The data from these biochemical and functional assays suggest a mechanism by which the MTARC1 p.A165T variant abrogates enzyme function which may contribute to its protective effect in liver disease.


Assuntos
Proteínas Mitocondriais , Mutação de Sentido Incorreto , Humanos , Células Hep G2 , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ubiquitinação , Estabilidade Proteica , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Oxirredutases
3.
J Pathol ; 264(1): 101-111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022853

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Progressão da Doença , Fígado , Ornitina Descarboxilase , Putrescina , Animais , Humanos , Putrescina/metabolismo , Ornitina Descarboxilase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/complicações , Células Hep G2 , Adulto
4.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099962

RESUMO

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Insulina/metabolismo
5.
Magn Reson Med ; 92(2): 459-468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469685

RESUMO

PURPOSE: To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS: An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS: Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation by ß $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION: These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.


Assuntos
Cafeína , Fígado , Isótopos de Nitrogênio , Cafeína/farmacologia , Cafeína/química , Animais , Ratos , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ratos Sprague-Dawley , Espectroscopia de Ressonância Magnética , Testes de Função Hepática
6.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R261-R273, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881412

RESUMO

Central administration of valine has been shown to cause hyperphagia in fish. Although mechanistic target of rapamycin (mTOR) is involved in this response, the contributions to feed intake of central and peripheral metabolite changes due to excess valine are unknown. Here, we investigated whether intracerebroventricular injection of valine modulates central and peripheral metabolite profiles and may provide insights into feeding response in fish. Juvenile rainbow trout (Oncorhynchus mykiss) were administered an intracerebroventricular injection of valine (10 µg·µL-1 at 1 µL·100·g-1 body wt), and the metabolite profile in plasma, hypothalamus, and rest of the brain (composing of telencephalon, optic tectum, cerebellum, and medulla oblongata) was carried out by liquid chromatography-mass spectrometry (LC/MS)-based metabolomics. Valine administration led to a spatially distinct metabolite profile at 1 h postinjection in the brain: enrichment of amino acid metabolism and energy production pathways in the rest of the brain but not in hypothalamus. This suggests a role for extrahypothalamic input in the regulation of feed intake. Also, there was enrichment of several amino acids, including tyrosine, proline, valine, phenylalanine, and methionine, in plasma in response to valine. Changes in liver transcript abundance and protein expression reflect an increased metabolic capacity, including energy production from glucose and fatty acids, and a lower protein kinase B (Akt) phosphorylation in the valine group. Altogether, valine intracerebroventricular administration affects central and peripheral metabolism in rainbow trout, and we propose a role for the altered metabolite profile in modulating the feeding response to this branched-chain amino acid.NEW & NOTEWORTHY Valine causes hyperphagia in fish when it is centrally administered; however, the exact mechanisms are far from clear. We tested how intracerebroventricular injection of valine in rainbow trout affected the brain and plasma metabolome. The metabolite changes in response to valine were more evident in the rest of the brain compared with the hypothalamus. Furthermore, we demonstrated for the first time that central valine administration affects peripheral metabolism in rainbow trout.


Assuntos
Hipotálamo , Oncorhynchus mykiss , Valina , Animais , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/sangue , Valina/farmacologia , Valina/administração & dosagem , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Metabolômica , Injeções Intraventriculares , Metabolismo Energético/efeitos dos fármacos
7.
NMR Biomed ; 37(8): e5123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38423797

RESUMO

The liver plays a central role in metabolic homeostasis, as exemplified by a variety of clinical disorders with hepatic and systemic metabolic disarrays. Of particular interest are the complex interactions between lipid and carbohydrate metabolism in highly prevalent conditions such as obesity, diabetes, and fatty liver disease. Limited accessibility and the need for invasive procedures challenge direct investigations in humans. Hence, noninvasive dynamic evaluations of glycolytic flux and steady-state assessments of lipid levels and composition are crucial for basic understanding and may open new avenues toward novel therapeutic targets. Here, three different MR spectroscopy (MRS) techniques that have been combined in a single interleaved examination in a 7T MR scanner are evaluated. 1H-MRS and 13C-MRS probe endogenous metabolites, while deuterium metabolic imaging (DMI) relies on administration of deuterated tracers, currently 2H-labelled glucose, to map the spatial and temporal evolution of their metabolic fate. All three techniques have been optimized for a robust single-session clinical investigation and applied in a preliminary study of healthy subjects. The use of a triple-channel 1H/2H/13C RF coil enables interleaved examinations with no need for repositioning. Short-echo-time STEAM spectroscopy provides well resolved spectra to quantify lipid content and composition. The relative benefits of using water saturation versus metabolite cycling and types of respiratory synchronization were evaluated. 2H-MR spectroscopic imaging allowed for registration of time- and space-resolved glucose levels following oral ingestion of 2H-glucose, while natural abundance 13C-MRS of glycogen provides a dynamic measure of hepatic glucose storage. For DMI and 13C-MRS, the measurement precision of the method was estimated to be about 0.2 and about 16 mM, respectively, for 5 min scanning periods. Excellent results were shown for the determination of dynamic uptake of glucose with DMI and lipid profiles with 1H-MRS, while the determination of changes in glycogen levels by 13C-MRS is also feasible but somewhat more limited by signal-to-noise ratio.


Assuntos
Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Fígado , Espectroscopia de Ressonância Magnética , Humanos , Fígado/metabolismo , Fígado/diagnóstico por imagem , Masculino , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Glucose/metabolismo
8.
Toxicol Appl Pharmacol ; 483: 116817, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215995

RESUMO

d-Tetramethrin is one of the main components of mosquito control products, and is widely used for the control of dengue fever and insecticide production. Due to its widespread use, d-tetramethrin is a ubiquitous environmental pollutant and poses potential risks to human health. However, the effects of d-tetramethrin on liver morphology and function are not clearly established. In this study, we used zebrafish as an animal model to analyze the acute and chronic effects of d-tetramethrin exposure on the liver. We exposed zebrafish larvae and adults to different concentrations of d-tetramethrin and examined the impact of d-tetramethrin on lipid and glycogen metabolism, cellular properties, oxidative stress, cell proliferation, and apoptosis in the liver. We also analyzed transcriptional changes in genes related to apoptosis, inflammation, and cell proliferation using qPCR. Zebrafish exposed to d-tetramethrin exhibited severe liver damage, as evidenced by the presence of vacuoles and nuclear distortion in liver cells. The liver area in zebrafish larvae of the treatment group was significantly smaller than that of the control group. Significant lipid accumulation and decreased glycogen levels were observed in the livers of both zebrafish larvae and adults exposed to d-tetramethrin. Furthermore, d-tetramethrin exposure induced apoptosis and inflammation in zebrafish embryos. Additionally, d-tetramethrin caused liver damage, metabolic dysfunction, and impaired liver function. These results suggest that d-tetramethrin induces liver toxicity in zebrafish, by inducing oxidative stress and inhibiting cell proliferation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Piretrinas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Estresse Oxidativo , Inflamação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Proliferação de Células , Glicogênio/metabolismo , Glicogênio/farmacologia , Lipídeos , Larva
9.
Reprod Biomed Online ; 49(3): 103992, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889592

RESUMO

RESEARCH QUESTION: What is the potential transmission of metabolic phenotype from IVF offspring to the subsequent generation? DESIGN: An IVF mouse model was established. The F1 generation mice were produced though IVF or natural mating and the F2 generation was obtained through the mating of F1 generation males with normal females. Their metabolic phenotype, including systemic and hepatic glucolipid metabolism, was examined. RESULTS: It was found that IVF F1 males exhibited metabolic changes. Compared with the control group, the IVF F1 generation showed increased body weight, elevated fasting glucose and insulin, and increased serum triglyceride concentrations. IVF F1 mice also showed an increased expression of hepatic lipogenesis and autophagy genes. Moreover, IVF F1 males transmitted some metabolic changes to their own male progeny (IVF F2) in the absence of a dietary challenge. IVF F2 mice had increased peri-epididymal and subcutaneous fat and decreased insulin sensitivity. Under the 'second hit' of a high-fat diet, IVF F2 mice further showed increased hepatic lipid deposition with unaltered autophagy levels. CONCLUSION: This research demonstrates the impact of IVF on hepatic glucose-lipid metabolism in two successive generations of offspring, highlighting the need for additional investigation. Enhanced understanding of the mechanisms underlying the transmission of multigenerational effects induced by IVF could potentially lead to the advancement of therapeutic interventions for individuals experiencing infertility.

10.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452134

RESUMO

The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light-dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box-repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding-fasting cycle.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Comportamento Alimentar/fisiologia , Fatores de Transcrição ARNTL/deficiência , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
11.
Gut ; 72(8): 1581-1591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36788015

RESUMO

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Metoxi-Hidroxifenilglicol , Humanos , Prognóstico , Estudos Prospectivos , Cirrose Hepática/complicações , Inflamação/complicações , Metabolômica , Mitocôndrias
12.
Gut ; 72(8): 1607-1619, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286229

RESUMO

Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Jejum Intermitente , Ingestão de Energia , Dieta , Comportamento Alimentar , Ingestão de Alimentos
13.
J Biol Chem ; 298(12): 102708, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36402444

RESUMO

Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.


Assuntos
Glucagon , Gluconeogênese , Camundongos , Animais , Glucagon/metabolismo , Glicerol/metabolismo , Glutamina/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Lactatos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Carbono/metabolismo
14.
J Biol Chem ; 298(10): 102401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988648

RESUMO

Hepatic steatosis associated with high-fat diet, obesity, and type 2 diabetes is thought to be the major driver of severe liver inflammation, fibrosis, and cirrhosis. Cytosolic acetyl CoA (AcCoA), a central metabolite and substrate for de novo lipogenesis (DNL), is produced from citrate by ATP-citrate lyase (ACLY) and from acetate through AcCoA synthase short chain family member 2 (ACSS2). However, the relative contributions of these two enzymes to hepatic AcCoA pools and DNL rates in response to high-fat feeding are unknown. We report here that hepatocyte-selective depletion of either ACSS2 or ACLY caused similar 50% decreases in liver AcCoA levels in obese mice, showing that both pathways contribute to the generation of this DNL substrate. Unexpectedly however, the hepatocyte ACLY depletion in obese mice paradoxically increased total DNL flux measured by D2O incorporation into palmitate, whereas in contrast, ACSS2 depletion had no effect. The increase in liver DNL upon ACLY depletion was associated with increased expression of nuclear sterol regulatory element-binding protein 1c and of its target DNL enzymes. This upregulated DNL enzyme expression explains the increased rate of palmitate synthesis in ACLY-depleted livers. Furthermore, this increased flux through DNL may also contribute to the observed depletion of AcCoA levels because of its increased conversion to malonyl CoA and palmitate. Together, these data indicate that in fat diet-fed obese mice, hepatic DNL is not limited by its immediate substrates AcCoA or malonyl CoA but rather by activities of DNL enzymes.


Assuntos
Diabetes Mellitus Tipo 2 , Lipogênese , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Camundongos , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Malonil Coenzima A/metabolismo , Camundongos Obesos , Palmitatos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
15.
Brief Bioinform ; 22(2): 1751-1766, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32201876

RESUMO

The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.


Assuntos
Biologia Computacional/métodos , Hepatopatias/metabolismo , Perfilação da Expressão Gênica , Humanos , Hepatopatias/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Taxa de Sobrevida , Biologia de Sistemas
16.
FASEB J ; 36(1): e22060, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862975

RESUMO

Farnesoid-x-receptor (FXR) agonists, currently trialed in patients with non-alcoholic steatosis (NAFLD), worsen the pro-atherogenic lipid profile and might require a comedication with statin. Here we report that mice feed a high fat/high cholesterol diet (HFD) are protected from developing a pro-atherogenic lipid profile because their ability to dispose cholesterol through bile acids. This protective mechanism is mediated by suppression of FXR signaling in the liver by muricholic acids (MCAs) generated in mice from chenodeoxycholic acid (CDCA). In contrast to CDCA, MCAs are FXR antagonists and promote a CYP7A1-dependent increase of bile acids synthesis. In mice feed a HFD, the treatment with obeticholic acid, a clinical stage FXR agonist, failed to improve the liver histopathology while reduced Cyp7a1 and Cyp8b1 genes expression and bile acids synthesis and excretion. In contrast, treating mice with atorvastatin mitigated liver and vascular injury caused by the HFD while increased the bile acids synthesis and excretion. Atorvastatin increased the percentage of 7α-dehydroxylase expressing bacteria in the intestine promoting the formation of deoxycholic acid and litocholic acid, two GPBAR1 agonists, along with the expression of GPBAR1-regulated genes in the white adipose tissue and colon. In conclusion, present results highlight the central role of bile acids in regulating lipid and cholesterol metabolism in response to atorvastatin and provide explanations for limited efficacy of FXR agonists in the treatment of NAFLD.


Assuntos
Atorvastatina/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/tratamento farmacológico , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Esteroide 12-alfa-Hidroxilase/metabolismo , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/metabolismo , Doenças Vasculares/microbiologia
17.
Part Fibre Toxicol ; 20(1): 49, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110964

RESUMO

BACKGROUND: Nanoplastics (NPs) are omnipresent in our lives as a new type of pollution with a tiny size. It can enter organisms from the environment, accumulate in the body, and be passed down the food chain. Inflammatory bowel disease (IBD) is a nonspecific intestinal inflammatory disease that is recurrent and prevalent in the population. Given that the intestinal features of colitis may affect the behavior and toxicity of NPs, it is imperative to clarify the risk and toxicity mechanisms of NPs in colitis models. METHODS AND RESULTS: In this study, mice were subjected to three cycles of 5-day dextran sulfate sodium (DSS) exposures, with a break of 7 to 11 days between each cycle. After the first cycle of DSS exposure, the mice were fed gavagely with water containing 100 nm polystyrene nanobeads (PS-NPs, at concentrations of 1 mg/kg·BW, 5 mg/kg·BW and 25 mg/kg·BW, respectively) for 28 consecutive days. The results demonstrated that cyclic administration of DSS induced chronic inflammation in mice, while the standard drug "5-aminosalicylic acid (5-ASA)" treatment partially improved colitis manifestations. PS-NPs exacerbated intestinal inflammation in mice with chronic colitis by activating the MAPK signaling pathway. Furthermore, PS-NPs aggravated inflammation, oxidative stress, as well as hepatic lipid metabolism disturbance in the liver of mice with chronic colitis. CONCLUSION: PS-NPs exacerbate intestinal inflammation and injury in mice with chronic colitis. This finding highlights chronically ill populations' susceptibility to environmental hazards, which urgent more research and risk assessment studies.


Assuntos
Colite , Poliestirenos , Camundongos , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Metabolismo dos Lipídeos , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Doença Crônica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768465

RESUMO

O-linked b-N-acetyl-glucosaminylation (O-GlcNAcylation) is one of the most common post-translational modifications of proteins, and is established by modifying the serine or threonine residues of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc signaling is considered a critical nutrient sensor, and affects numerous proteins involved in cellular metabolic processes. O-GlcNAcylation modulates protein functions in different patterns, including protein stabilization, enzymatic activity, transcriptional activity, and protein interactions. Disrupted O-GlcNAcylation is associated with an abnormal metabolic state, and may result in metabolic disorders. As the liver is the center of nutrient metabolism, this review provides a brief description of the features of the O-GlcNAc signaling pathway, and summarizes the regulatory functions and underlying molecular mechanisms of O-GlcNAcylation in liver metabolism. Finally, this review highlights the role of O-GlcNAcylation in liver-associated diseases, such as diabetes and nonalcoholic fatty liver disease (NAFLD). We hope this review not only benefits the understanding of O-GlcNAc biology, but also provides new insights for treatments against liver-associated metabolic disorders.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Humanos , Acetilglucosamina/metabolismo , Diabetes Mellitus/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Acilação/fisiologia
19.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768527

RESUMO

Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.


Assuntos
Hepatopatias , Voo Espacial , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatias/etiologia , Mecanotransdução Celular/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
20.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511252

RESUMO

Glucocorticoids (GCs) are some of the most widely prescribed therapies for treating numerous inflammatory diseases and multiple cancer types. With chronic use, GCs' therapeutic benefits are concurrent with deleterious metabolic side effects, which worsen when combined with a high-fat diet (HFD). One characteristic of the common Western HFD is the presence of high omega-6 polyunsaturated fatty acids (PUFAs) and a deficiency in omega-3 PUFAs. The aim of this experiment was to determine whether fat composition resulting from HFD affects glucocorticoid-induced alterations in lipid-handling by the liver and skeletal muscle. Male wild-type C57BL/6 mice were randomized into two groups: n-6 (45% fat 177.5 g lard) and n-3 (45% fat 177.5 g Menhaden oil). After 4 weeks on their diets, groups were divided to receive either daily injections of dexamethasone (3 mg/kg/day) or sterile PBS for 1 week while continuing diets. The n-3 HFD diet attenuated adipose and hepatic fatty accumulation and prevented GC-induced increases in liver lipid metabolism markers Cd36 and Fabp. N-3 HFD had little effect on markers of lipid metabolism in oxidative and glycolytic skeletal muscle and was unable to attenuate GC-induced gene expression in the muscle. The present study's result demonstrated that the change of fat composition in HFD could beneficially alter the fatty acid accumulation and associated lipid metabolism markers in mice treated with dexamethasone.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3 , Animais , Masculino , Camundongos , Dexametasona/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Glucocorticoides/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa