Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Stroke Cerebrovasc Dis ; 33(4): 107613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301749

RESUMO

OBJECTIVES: Previous studies have identified abnormal expression of lncRNA SNHG12 in ischemic stroke, but the underlying molecular mechanism remains unclear. MATERIALS AND METHODS: Through database predictions, m6A methylation sites were found on SNHG12, suggesting post-transcriptional modification. To further elucidate the role of SNHG12 and m6A methyltransferase WTAP in oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in cerebral microvascular endothelial cells, we conducted investigations. Additionally, we examined the impact of m6A methyltransferase WTAP on SNHG12 expression. RESULTS: Overexpressing SNHG12 in bEnd.3 cells was found to inhibit cell proliferation and promote apoptosis, as well as activate the production of reactive oxygen species and inflammatory cytokines (E-selectin, IL-6 and MCP-1), along with angiogenic proteins (VEGFA and FGFb). Conversely, SNHG12 knockdown alleviated OGD/R-induced damage to BEnd.3 cells, resulting in improved cell proliferation, reduced apoptosis, decreased ROS and LDH production, as well as diminished expression of inflammatory cytokines (E-selectin, IL-6 and MCP-1) and angiogenic proteins (VEGFA and FGFb). Furthermore, WTAP was found to positively regulate SNHG12 expression, and WTAP knockdown in bEnd.3 cells under the OGD/R conditions inhibited cell proliferation, promoted apoptosis, and increased ROS and LDH production. CONCLUSION: These findings suggest that WTAP may play a crucial role in SNHG12-mediated OGD/R-induced damage in bEnd.3 cells. More molecular experiments are needed to further analyze its mechanism. Overall, our study helps to enrich our understanding of the dysregulation of SNHG12 in ischemic stroke.


Assuntos
Proteínas de Ciclo Celular , AVC Isquêmico , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Oxigênio/metabolismo , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Selectina E , Glucose , Interleucina-6/metabolismo , AVC Isquêmico/metabolismo , Reperfusão , Proteínas Angiogênicas/metabolismo , Metiltransferases/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose , Fatores de Processamento de RNA/metabolismo
2.
Zhonghua Nan Ke Xue ; 29(2): 113-119, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-37847082

RESUMO

OBJECTIVE: To analyze the effects of lncRNA SNHG12 on the proliferation, migration and invasiveness of PCa cells by regulating the expression of E2F5. METHODS: Using real time fluorescence RT-PCR, we detected the expressions of lncRNA SNHG12 and E2F5, constructed the PC3 cells inhibiting the lncRNA SNHG12 expression. After transfection of the PC3 cells, we divided them into an NC, a si-NC, a si-SNHG12, a si-E2F5, a si-SNHG12+OE-si-NC, and a si-SNHG12+OE-E2F5 group, followed by examination of the proliferation, apoptosis, migration and invasiveness of the cells in different groups. RESULTS: The expressions of lncRNA SNHG12 and E2F5 were significantly up-regulated in the PCa tissue compared with those in the adjacent tissue (P < 0.05), remarkably higher in the DU145, LNCaP and PC3 groups than in the RWPE-1 group, the highest in the PC3 group (P < 0.05). The expression of SNHG12 was markedly down-regulated in the si-SNHG12 group (P < 0.05) in comparison with that in the si-NC group, indicating the successful construction of a PC3 cell line interfering with the lncRNA SNHG12 expression. Compared with the si-NC group, the si-SNHG12 group showed significant decreases in the values of CyclinD1, MMP-9 and OD and the numbers of migrating and invading cells, and an increase in apoptotic cells (P < 0.05), while the si-E2F5 group exhibited a remarkably down-regulated expression of E2F5 (P < 0.05), reduced values of CyclinD1, MMP-9 and OD, decreased numbers of migrating and invading cells and an increased number of apoptotic cells (P < 0.05). The dual luciferase report test showed that E2F5 reduced the luciferase activity of SNHG12 (P < 0.05 and had an insignificant impact on the luciferase activity of MUT-SNHG12 (P > 0.05). Inhibiting the expression of lncRNA SNHG12 resulted in significant decreases in the expression of E2F5, values of CyclinD1, MMP-9 and OD and numbers of migrating and invading cells, but an increase in apoptotic cells (P < 0.05). The E2F5 expression, the CyclinD1, MMP-9 and OD values and the numbers of migrating and invading cells were markedly increased while the number of apoptotic cells decreased in the si-SNHG12+OE-E2F5 group compared with those in the si-SNHG12+OE-si-NC group (P < 0.05). CONCLUSION: Interfering with the expression of lncRNA SNHG12 can regulate that of E2F5, inhibit the proliferation, migration and invasiveness of PCa cells and promote their apoptosis.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , Metaloproteinase 9 da Matriz/genética , Movimento Celular/genética , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , MicroRNAs/genética , Fator de Transcrição E2F5/genética
3.
Toxicol Appl Pharmacol ; 442: 115975, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307376

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (HIR) injury is a pathological condition initiated by interrupted hepatic blood supply and exaggerated after reperfusion, which is one of the most lethal risks in liver transplantation and other liver surgeries. We aimed to investigate the protective mechanism of octreotide (Oct) against HIR injury. METHODS: The function of Oct was evaluated in the in vivo mouse model of HIR injury. Histological examinations were performed to assess the pathological changes. Serum parameters including ALT and AST were measured to evaluate the liver damage. qRT-PCR and western blot analysis were employed to determine the levels of long non-coding RNA SNHG12 (SNHG12) and autophagy or apoptosis-related proteins. RNA pull-down and RIP assays were used to verify the interaction between SNHG12 and TAF15. The transcriptional regulation of TAF15 in YAP1 was validated by ChIP and luciferase reporter assays. RESULTS: In the in vivo HIR injury model, Oct efficiently alleviated HIR-caused hepatic damage by suppressing apoptosis and activating autophagy. However, silencing of SNHG12 abrogated the protective effects of Oct via inactivating autophagy. Further mechanism investigation revealed that SNHG12 promoted the stabilization of Sirt1 and increased YAP1 transcriptional activity via interacting with TAF15. Up-regulation of Sirt1 and YAP1 was essential for maintaining the protective effect of Oct against HIR injury through increasing autophagic flux and suppressing apoptosis. CONCLUSIONS: Oct-induced up-regulation of SNHG12 attenuated HIR injury via promoting Sirt1 stabilization and YAP1 transcription to activate autophagy and repress apoptosis.


Assuntos
Hepatopatias , Octreotida , RNA Longo não Codificante , Traumatismo por Reperfusão , Sirtuína 1 , Fatores Associados à Proteína de Ligação a TATA , Proteínas de Sinalização YAP , Animais , Apoptose , Hepatopatias/tratamento farmacológico , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Camundongos , Octreotida/farmacologia , Octreotida/uso terapêutico , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sirtuína 1/genética , Fatores Associados à Proteína de Ligação a TATA/farmacologia , Transcrição Gênica , Proteínas de Sinalização YAP/genética
4.
Cell Mol Biol Lett ; 27(1): 43, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658874

RESUMO

BACKGROUND: The pivotal role of long noncoding RNAs (lncRNAs) in cancer immune responses has been well established. This study was conducted with the aim of exploring the molecular mechanism of lncRNA small nucleolar RNA host gene 12 (SNHG12) in immune escape of non-small cell lung cancer (NSCLC). METHODS: Expression of lncRNA SNHG12, programmed cell death receptor ligand 1 (PD-L1), ubiquitin-specific protease 8 (USP8), and human antigen R (HuR) in NSCLC tissues and cells was measured, and their binding relationship was determined. NSCLC cell proliferation and apoptosis were assessed. Peripheral blood mononuclear cells (PBMCs) were co-cultured with NSCLC cells. The ratio of CD8+ T cells, PBMC proliferation, and inflammatory factors were determined. lncRNA SNHG12 localization was assessed via subcellular fractionation assay. The half-life period of mRNA was determined using actinomycin D. Xenograft tumor models were established to confirm the role of lncRNA SNHG12 in vivo. RESULTS: LncRNA SNHG12 was found to be prominently expressed in NSCLC tissues and cells, which was associated with a poor prognosis. Silencing lncRNA SNHG12 resulted in the reduction in proliferation and the promotion of apoptosis of NSCLC cells, while simultaneously increasing PBMC proliferation and the ratio of CD8+ T cells. Mechanically, the binding of lncRNA SNHG12 to HuR improved mRNA stability and expression of PD-L1 and USP8, and USP8-mediated deubiquitination stabilized the protein level of PD-L1. Overexpression of USP8 or PD-L1 weakened the inhibition of silencing lncRNA SNHG12 on the immune escape of NSCLC. Silencing lncRNA SNHG12 restricted tumor growth and upregulated the ratio of CD8+ T cells by decreasing USP8 and PD-L1. CONCLUSION: LncRNA SNHG12 facilitated the immune escape of NSCLC by binding to HuR and increasing PD-L1 and USP8 levels.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Semelhante a ELAV 1/metabolismo , Endopeptidases , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/genética
5.
Biochem Biophys Res Commun ; 495(2): 1822-1832, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229388

RESUMO

Osteosarcoma is the most common primary malignant bone tumor and has a high fatality rate in children and adolescents. Recently, an increasing amount of evidence has demonstrated that lncRNAs have crucial roles in regulating biological characteristics in malignant tumors. Therefore, this research was carried out to uncover the biological function and the potential molecular mechanism of SNHG12 in osteosarcoma. In this study, we found that SNHG12 was significantly upregulated in both osteosarcoma tissues and cell lines and osteosarcoma patients with high levels of SNHG12 tended to have a poor prognosis. We evaluated the biological function of SNHG12 in 143B and U2OS cells and show that the downregulation of SNHG12 suppressed cell proliferation by blocking cell cycle progression at the G0/G1 phase and weakened cell invasion and migration abilities. Dual-luciferase reporter and RIP assays were conducted to confirm that SNHG12 functioned as a ceRNA, modulating the expression of Notch2 by sponging miR-195-5p in osteosarcoma. We further demonstrate that Notch2 played a crucial role in activating the Notch signaling pathway. In conclusion, SNHG12 might serve as a valuable biomarker and prognosis factor in osteosarcoma patients. The SNHG12/miR-195-5p/Notch2-Notch signaling pathway axis might become a novel therapeutic for osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , MicroRNAs/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , Receptor Notch2/genética , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/patologia , Carcinogênese/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Biológicos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Osteossarcoma/etiologia , Osteossarcoma/patologia , RNA Longo não Codificante/antagonistas & inibidores , Transdução de Sinais , Regulação para Cima , Adulto Jovem
6.
Breast Cancer ; 31(4): 607-620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833118

RESUMO

OBJECTIVE: Breast cancer is one of the most prevalent malignancies in women. Exosomes are important mediators of intercellular communication; however, their regulatory mechanisms in human umbilical vein endothelial cells (HUVECs) angiogenesis in breast cancer remain unknown. METHODS: We isolated and characterized breast cancer cell-derived exosomes and investigated their functions. Exosomal sequencing and the TCGA database were used to screen long non-coding RNA (lncRNA). In vitro and in vivo experiments were performed to investigate the role of exosomal lncRNA in HUVEC angiogenesis and tumor growth. Molecular methods were used to demonstrate the molecular mechanism of lncRNA. RESULTS: We demonstrated that breast cancer cell-derived exosomes promoted HUVEC proliferation, tube formation, and migration. Combining exosomal sequencing results with The Cancer Genome Atlas Breast Cancer database, we screened lncRNA small nucleolar RNA host gene 12 (SNHG12), which was highly expressed in breast cancer cells. SNHG12 was also upregulated in HUVECs co-cultured with exosome-overexpressed SNHG12. Moreover, overexpression of SNHG12 in exosomes increased HUVEC proliferation and migration, whereas deletion of SNHG12 in exosomes showed the opposite effects. In vivo experiments showed that SNHG12 knockdown in exosomes inhibited breast cancer tumor growth. Transcriptome sequencing identified MMP10 as the target gene of SNHG12. Functional experiments revealed that MMP10 overexpression promoted HUVEC angiogenesis. Mechanistically, SNHG12 blocked the interaction between PBRM1 and MMP10 by directly binding to PBRM1. Moreover, exosomal SNHG12 promoted HUVEC angiogenesis via PBRM1 and MMP10. CONCLUSIONS: In summary, our findings confirmed that exosomal SNHG12 promoted HUVEC angiogenesis via the PBRM1-MMP10 axis, leading to enhanced malignancy of breast cancer. Exosomal SNHG12 may be a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Movimento Celular , Proliferação de Células , Progressão da Doença , Exossomos , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Neovascularização Patológica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Exossomos/metabolismo , Exossomos/genética , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Angiogênese
7.
J Ovarian Res ; 17(1): 72, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566229

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) is the most common endocrine disease in women of childbearing age which is often associated with abnormal proliferation or apoptosis of granulosa cells (GCs). Studies proved that long non-coding RNA SNHG12 (lncRNA SNHG12) is significantly increased in ovarian cancer and cervical cancer patients and cells. The inhibition of lncRNA SNHG12 restrains the proliferation, migration, and invasion in tumor cells. OBJECTIVE: This study explores the role of lncRNA SNHG12 in the apoptosis of GCs in PCOS and the underlying regulated mechanism. METHODS: In this study, the injection of dehydroepiandrosterone (DHEA) successfully induced the PCOS model in SD rats. The human granulosa-like tumor cell line KGN was incubated with insulin to assess the effects of lncRNA SNHG12 on GC proliferation and apoptosis. RESULTS: Overexpression of lncRNA SNHG12 influenced the body weight, ovary weight, gonadal hormone, and pathological changes, restrained the expressions of microRNA (miR)-129 and miR-125b, while downregulation of lncRNA SNHG12 exerted the opposite effects in PCOS rats. After silencing lncRNA SNHG12 in cells, the cell viability and proliferation were lessened whereas apoptosis of cells was increased. A loss-of-functions test was implemented by co-transfecting miR-129 and miR-125b inhibitors into lncRNA SNHG12-knocking down cells to analyze the effects on cell viability and apoptosis. Next, the existence of binding sites of SNHG12 and miR-129/miR-125b was proved based on the pull-down assay. CONCLUSION: lncRNA SNHG12 might be a potential regulatory factor for the development of PCOS by sponging miR-129 and miR-125b in GCs.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Humanos , Feminino , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose/genética
8.
J Cell Commun Signal ; 18(2): e12033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946724

RESUMO

Liver fibrosis is a persistent damage repair response triggered by various injury factors, which leads to an abnormal accumulation of extracellular matrix within liver tissue samples. The current clinical treatment of liver fibrosis is currently ineffective; therefore, elucidating the mechanism of liver fibrogenesis is of significant importance. Herein, the function and related mechanisms of lncRNA Snhg12 within hepatic fibrosis were investigated. Snhg12 expression was shown to be increased in mouse hepatic fibrotic tissue samples, and Snhg12 knockdown suppressed hepatic pathological injury and down-regulated the expression levels of fibrosis-associated proteins. Mechanistically, Snhg12 played a role in the early activation of mouse hepatic stellate cells (mHSCs) based on bioinformatics analysis, and Snhg12 was positively correlated with Igfbp3 expression. Further experimental results demonstrated that Snhg12 knockdown impeded mHSCs proliferation and activation and also downregulated the protein expression of Igfbp3. Snhg12 could interact with IGFBP3 and boost its protein stability, and overexpression of Igfbp3 partially reversed the inhibition of mHSCsproliferation and activation by the knockdown of Snhg12. In conclusion, LncRNA Snhg12 mediates liver fibrosis by targeting IGFBP3 and promoting its protein stability, thereby promoting mHSC proliferation and activation. Snhg12 has been identified as an underlying target for treating liver fibrosis.

9.
Adv Clin Exp Med ; 32(9): 1017-1027, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36994689

RESUMO

BACKGROUND: Hepatic progenitor cells (HPCs) play an important role in the treatment of chronic liver disease. OBJECTIVES: To investigate the effect and mechanism of long noncoding RNAs/small nucleolar RNA host gene 12 (lncRNA SNHG12) on the proliferation and migration of the HPC cell line WB-F344. MATERIAL AND METHODS: Hepatic progenitor cells were divided into a no-treatment group (sham), empty vector transfection of plasmid pcDNA3.1 (NC vector), pcDNA3.1-SNHG12 (SNHG12), negative short hairpin RNA (sh-NC), SNHG12 shRNA (sh-SNHG12), and pcDNA3.1-SNHG12+salinomycin intervention (SNHG12+salinomycin) groups. Cell proliferation, cell cycle and migration ability, as well as albumin (ALB), alpha-fetoprotein (AFP), â-catenin, cyclin D1, and c-Myc protein expression in each group were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell migration assays, enzyme-linked immunosorbent assay (ELISA), and western blot. RESULTS: The overexpression of lncRNA SNHG12 significantly upregulated proliferation, migration and cell cycle progression of WB-F344 cells. Furthermore, the overexpression of lncRNA SNHG12 increased the level of ALB, and the protein expression of â-catenin, cyclin D1 and c-Myc in the cell line, while decreasing the level of AFP. Conversely, the knockdown of lncRNA SNHG12 displayed the opposite effects. The inhibition of the Wnt/â-catenin signaling pathway with salinomycin significantly downregulated the â-catenin, cyclin D1 and c-Myc protein expression in WB-F344 cells. CONCLUSIONS: The lncRNA SNHG12 promotes the proliferation and migration of WB-F344 cells via activating the Wnt/â-catenin pathway.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Ciclina D1 , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/farmacologia , Movimento Celular/genética , Via de Sinalização Wnt/genética , RNA Interferente Pequeno , Proliferação de Células/genética , Células-Tronco , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
10.
Ann Clin Lab Sci ; 53(1): 64-75, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36889771

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) is recognized as one of the primary causes of global cancer-related mortality. Long noncoding RNAs (lncRNAs) participate in NSCLC cell progression. This study probed the potential mechanism of lncRNA small nucleolar RNA host gene 12 (SNHG12) in cisplatin (DDP)-resistance in NSCLC cells. METHODS: The intracellular expressions of SNHG12, miR-525-5p, and XIAP were examined via reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Afterwards, small interfering RNAs (siRNAs) of SNHG12, microRNA (miR)-525-5p inhibitor, and X-linked inhibitor of apoptosis (XIAP) pcDNA3.1 were transfected into NSCLC cells. Subsequently, changes in half-maximal (50%) inhibitory concentration (IC50) of NSCLC cells to DDP were detected through the cell counting kit-8 (CCK-8) method. NSCLC proliferative ability and apoptosis rate were determined with the help of colony formation and flow cytometry assays. The subcellular localization of SNHG12 was analyzed by nuclear/cytosol fractionation assay and binding relationships between miR-525-5p and SNHG12 or XIAP were analyzed via dual-luciferase reporter gene assay. Furthermore, rescue experiments were designed to detect the effects of miR-525-5p and XIAP on NSCLC sensitivity to DDP. RESULTS: SNHG12 and XIAP were up-regulated in NSCLC cells while miR-525-5p was down-regulated. After DDP treatment and SNHG12 repression, NSCLC proliferative ability was decreased whereas apoptosis rate was increased, and NSCLC sensitivity to DDP was enhanced. Mechanically, SNHG12 repressed miR-525-5p expression, and miR-525-5p could targeted inhibit XIAP transcription level. miR-525-5p repression or XIAP overexpression reduced NSCLC sensitivity to DDP. CONCLUSION: SNHG12 was overexpressed in NSCLC cells and promoted XIAP transcription by repressing miR-525-5p expression, enhancing DDP-resistance in NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
11.
Mol Neurobiol ; 59(2): 1073-1087, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839459

RESUMO

Increasing research has proved that long non-coding RNAs (lncRNAs) play a critical role in a variety of biological processes. However, their functions in cerebral ischemia are still unclear. We found that the small nucleolar RNA host gene 12 (SNHG12) is a new type of lncRNA induced by ischemia/reperfusion. Here, we show that the expression of SNHG12 was upregulated in the brain tissue of mice exposed to middle cerebral artery occlusion/reperfusion (MCAO/R) and primary mouse cerebral cortex neurons treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Mechanistically, SNHG12 knockdown resulted in larger infarct sizes and worse neurological scores in MCAO/R mice. Consistent with the in vivo results, SNHG12 upregulation significantly increased the viability and prevented apoptosis of neurons cultured under OGD/R conditions. In addition, we found that SNHG12 acts as a competing endogenous RNA (ceRNA) with microRNA (miR)-136-5p, thereby regulating the inhibition of its endogenous target Bcl-2. Moreover, SNHG12 was proven to target miR-136-5p, increasing Bcl-2 expression, which finally led to the activation of PI3K/AKT signaling. In conclusion, we demonstrated that SNHG12 acts as a ceRNA of miR-136-5p, thereby targets and regulates the expression of Bcl-2, which attenuates cerebral ischemia/reperfusion injury via activation of the PI3K/AKT pathway. This knowledge helps to better understand the pathophysiology of cerebral ischemic stroke and may provide new treatment options for this disease.


Assuntos
Isquemia Encefálica , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Camundongos , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
12.
Bioengineered ; 13(1): 1838-1857, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35014944

RESUMO

Non-small-cell lung cancer (NSCLC) is defined as the most universally diagnosed class of lung cancer. Cisplatin (DDP) is an effective drug for NSCLC, but tumors are prone to drug resistance. The current study set out to evaluate the regulatory effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) in extracellular vesicles (EVs) derived from carcinoma-associated fibroblasts (CAFs) on DDP resistance in NSCLC cells. Firstly, NSCLC cells were treated with EVs, followed by detection of cell activity, IC50 values, cell proliferation and apoptosis, and Cy3-SNHG12. We observed that CAFs-EVs promoted IC50 values and cell proliferation and inhibited apoptosis. In addition, we learned that lncRNA SNHG12 carried by CAFs-EVs into NSCLC facilitated DDP resistance of NSCLC cells. Furthermore, ELAV like RNA binding protein 1 (HuR/ELAVL1) binding to lncRNA SNHG12 and X-linked inhibitor of apoptosis (XIAP) was verified and RNA stability of XIAP was also verified CAFs-EVs promoted RNA stability and transcription of XIAP, while silencing HuR could partially-reverse this promoting effect. Further joint experimentation showed that silencing XIAP partially inhibited DDP resistance in NSCLC cells. Additionally, the tumor growth and the positive rate of Ki67 and HuR were detected, which showed that CAFs-oe-EVs promoted the tumor and the positive rate of Ki67, as well as the levels of lncRNA SNHG12, HuR, and XIAP in vivo. Collectively, our findings indicated that lncRNA SNHG12 carried by CAFs-EVs into NSCLC cells promoted RNA stability and XIAP transcription by binding to HuR, thus augmenting DDP resistance in NSCLC cells.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Vesículas Extracelulares/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética
13.
Front Med (Lausanne) ; 8: 680378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239888

RESUMO

Background: Small nucleolar RNA host gene 12 (SNHG12) is a newly identified long non-coding RNA (lncRNA) whose involvements have been explored in several cancers. Our study aimed to explore the functions of SNHG12 on intrahepatic cholangiocarcinoma (ICC) progression and its interaction with miR-199a-5p and Klotho. Methods: RT-PCR was performed to examine the expressions of SNHG12, miR-199a-5p and Klotho in ICC cells. Cell counting kit-8 (CCK-8), colony formation assays and transwell assays were applied to analyze the proliferation, migration and invasion of ICC cells. Luciferase assays, RIP assays and RNA pull-down assays were carried out to demonstrate the direct binding relationships among SNHG12, miR-199a-5p and Klotho. The xenograft nude models were applied to test the effects of SNHG12 on ICC tumor growth. Results: The expression of SNHG12 and Klotho was distinctly increased in ICC cells, while miR-199a-5p expressions were decreased. Functionally, the silence of SNHG12 inhibited the proliferation and metastasis of ICC cells, while miR-199a-5p overexpression exhibited an opposite result. Mechanistically, Knockdown of SNHG12 significantly suppressed the expressions of miR-199a-5p by sponging it, and then increased Klotho expression. The final in vivo experiments suggested that the silence of SNHG12 distinctly inhibited tumor growth. Conclusion: Our findings indicated that SNHG12 inhibited cell proliferation and metastasis process of ICC cells through modulating the miR-199a-5p/Klotho axis and it is expected to become a potential therapeutic target for ICC.

14.
Bioengineered ; 12(2): 12867-12879, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34783303

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that causes tremors, gait rigidity, and hypokinesia. We determined the effects of long noncoding RNA small nucleolar RNA host gene 12 (lncRNA SNHG12) on the development of PD. StarBase analysis and dual-luciferase reporter assay verified the interaction between lncRNA SNHG12 and microRNA-138-5p (miR-138-5p). The effects of suppressed lncRNA SNHG12 and increased miR-138-5p levels on mRNA were determined using quantitative real-time-PCR (qRT-PCR) in 1-methyl-4-phenylpyridinium (MPP+) treated SH-SY5Y cells. Increased lactate dehydrogenase (LDH) activity, apoptosis, cleaved-Caspase3/Caspase3 ratio, inflammatory response, reactive oxygen species (ROS) level, decreased cell viability, and superoxide dismutase (SOD) activity were observed in MPP+-stimulated SH-SY5Y cells. Transfection of the lncRNA SNHG12-plasmid reduced neuronal apoptosis, inflammation, and oxidative stress in MPP+-stimulated SH-SY5Y cells that were rescued by adding the miR-138-5p mimic. These results showed that lncRNA SNHG12 could affect neuronal apoptosis, inflammation, and oxidative stress in a PD cell model by regulating miR-138-5p expression. TargetScan and dual-luciferase reporter analysis suggested that miR-138-5p targeted nuclear factor I/B (NFIB). Furthermore, the expression level of NFIB was downregulated after MPP+ stimulation in SH-SY5Y cells. After transfecting with the miR-138-5p inhibitor, NFIB-siRNA, and co-transfecting and detecting NFIB mRNA and protein, we found that miR-138-5p negatively regulated NFIB expression. In conclusion, lncRNA SNHG12 could alleviate neuronal apoptosis, inflammation, and oxidative stress in a PD cell model by regulating the miR-138-5p/NFIB axis, providing new therapeutic targets for patients with PD.


Assuntos
Inflamação/genética , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , Neurônios/patologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/patologia , RNA Longo não Codificante/metabolismo , 1-Metil-4-fenilpiridínio , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamação/patologia , MicroRNAs/genética , Modelos Biológicos , Fatores de Transcrição NFI/genética , Neurônios/metabolismo , Estresse Oxidativo/genética , RNA Longo não Codificante/genética
15.
J Leukoc Biol ; 110(4): 651-661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464650

RESUMO

The objective of this study was to find the role of LncRNA SNHG12 in the regulation of hypertensive vascular endothelial injury. LncRNA SNHG12 and miR-25-3p expression were detected by quantitative RT-PCR. Protein levels of Sirtuin 6 (SIRT6), endothelial cell (EC) senescence markers p16 and p21, and EC marker CD31 were measured by Western blot. The apoptosis of HUVECs was detected by flow cytometry. The binding between LncRNA SNHG12 and miR-25-3p was verified by dual luciferase reporter gene assay and RNA pull-down assay. As a result, LncRNA SNHG12 was down-regulated in aortic primary ECs isolated from Ang II-induced hypertensive mice and 1 kidney/deoxycorticosterone acetate/salt-induced hypertensive mice. In Ang II-treated HUVECs, the expression level of SNHG12 was reduced and the overexpression of SNHG12 inhibited EC senescence markers p16 and p21 expressions, the apoptosis of HUVECs, and caspase-3 activity. Further investigation confirmed that LncRNA SNHG12 bound to miR-25-3p, and negatively regulated miR-25-3p expression. MiR-25-3p directly targeted SIRT6 and negatively regulated SIRT6 expression. In addition, SNHG12 overexpression inhibited Ang II-induced HUVECs injury through regulating miR-25-3p. Finally, in vivo experiments showed LncRNA SNHG12 overexpression alleviated vascular endothelial injury in Ang II-induced hypertensive mice. In conclusion, LncRNA SNHG12 alleviates vascular endothelial injury induced by hypertension through miR-25-3p/SIRT6 pathway.


Assuntos
Endotélio Vascular/lesões , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertensão/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sirtuínas/metabolismo , Angiotensina II , Animais , Sequência de Bases , Regulação para Baixo/genética , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Sirtuínas/genética
16.
Cell Signal ; 84: 109992, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774129

RESUMO

Hepatocellular carcinoma (HCC) is the most common cancer and its prognosis is poor due to metastasis and recurrence. EMT is associated with metastasis. A deep understanding of regulatory mechanism of EMT is critical. LncRNA is involved in regulation of various biological processes including EMT. This study aimed to investigate the regulatory signal axis among lncRNA SNHG12, miR-516a-5p and the target gene HEG1 during EMT. Cell cycle and apoptosis were analyzed by flow cytometry. Tumorigenesis was analyzed by clone formation assay. Wound healing assay and transwell assay was performed to detect migration and invasion, respectively. Interaction among SNHG12, miR-516a-5p and HEG1 were analyzed by dual luciferase assay and RIP assay. We also detected expression of RNA and protein by QPCR and western blotting. Finally, tumor growth was analyzed by tumorigenesis assay in vivo. Ki-67 and HEG1 level in tumor tissues was analyzed by IHC. SNHG12 and HEG1 were upregulated, miR-516a-5p was downregulated in HCC cell lines. SNHG12 could interact with and inhibit miR-516a-5p. MiR-516a-5p could interact with HEG1 and inhibit HEG1 expression. Knock down SNHG12 inhibited proliferation, migration, invasion, EMT and promoted apoptosis of HCC cells. Such effects were antagonized by inhibiting miR-516a-5p. SNHG12 overexpression lead to opposite results. Similar results were observed in mice. SNHG12 could promote EMT in HCC through targeting and inhibiting miR-516a-5p, which eventually upregulated HEG1 expression, in both cell and mice.


Assuntos
Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Proteínas de Membrana/genética , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32432698

RESUMO

Pancreatic cancer is a kind of malignant carcinoma with high mortality, which is devoid of early diagnostic biomarker and effective therapeutic methods. Recently, long non-coding RNAs (lncRNAs) have been reported as a crucial role in regulating the development of various kinds of tumors. Here, we found lncRNA small nuclear RNA host gene 12 (SNHG12) is highly expressed in pancreatic cancer tissues and cell lines through qRT-PCR, which suggested that SNHG12 possibly accelerates the progression of pancreatic cancer. Further study revealed that SNHG12 promoted cancer cells growth and invasion via absorbing miR-320b. Flow cytometry and transwell chamber assay were utilized to verify the promoting effects on proliferation and invasion that SNHG12 acts in pancreatic cancer cells. Evidence that SNHG12 increased cell invasive ability through up-regulated EMT process was lately obtained by Western blotting assay. Consequently, we extrapolated that SNHG12/miR-320b could be invoked as a promising early diagnostic hallmark and therapeutic strategy for pancreatic cancer.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Transdução de Sinais
18.
Gene ; 726: 144145, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743769

RESUMO

Long non-coding RNA SNHG12 (lncSNHG12) plays important roles in the onset and progression of various cancers. However, the role of lncSNHG12 in osteosarcoma (OS) remains unclear. Therefore, the aim of the present study was to determine the function of lncSNHG12 in OS. A bioinformatics website was used to predict the downstream targets of lncSNHG12. In addition, qRT-PCR was employed to assess lncSNHG12 expression in OS cells. Cell migration and proliferation in vitro were verified using the transwell migration, clone formation, and CCK8 assays. Tumor metastasis and xenograft formation were monitored in nude mice with or without downregulation of lncSNHG12. The results show that lncSNHG12 was upregulated in OS cell lines. Downregulation lncSNHG12 suppressed the metastasis and proliferation both in vitro and in vivo. Also, lncSNHG12 downregulation suppressed the expression of insulin growth factor 1 receptor (IGF1R) expression through sponging miR-195-5p, which was verified with the luciferase reporter assay and rescue experiments. These findings suggest that downregulation of lncSNHG12 may suppress aggressive OS phenotypes. Moreover, lncSNHG12 silencing inhibited OS metastasis and growth by targeting the miR-195-5p/IGF1R axis, which represents a candidate marker and target for OS treatment and management.


Assuntos
Proliferação de Células/genética , Regulação para Baixo/genética , MicroRNAs/genética , Metástase Neoplásica/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , Receptor IGF Tipo 1/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteoblastos/patologia , Osteossarcoma/patologia , Prognóstico , Regulação para Cima/genética
19.
J Int Med Res ; 48(6): 300060520922339, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529873

RESUMO

OBJECTIVE: The deficient placental blood perfusion caused by the attenuated infiltration of trophoblast cells is a key factor in the occurrence of preeclampsia (PE). Furthermore, the long noncoding (lnc)RNA SNHG12 (small nucleolar RNA host gene 12) can promote the proliferation and metastasis of multiple tumor cells. However, whether lncRNA SNHG12 affects proliferation and metastasis of trophoblast cells is unclear. METHODS: We examined the level of lncRNA SNHG12 in plasma and placenta of patients with PE and constructed trophoblast cells with overexpressed or knocked down SNHG12. CCK-8, wound healing, and Transwell assays were used to detect alterations in proliferation, migration, and invasion of trophoblast cells. Western blotting was used to detect proteins related to the epithelial-mesenchymal transition (EMT), and cell cycle assays clarified cell cycle distribution. RESULTS: LncRNA SNHG12 promoted the proliferation, migration, and invasion of trophoblast cells. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, ß-catenin, and vimentin were positively correlated with SNHG12, and expression of E-cadherin was negatively correlated with SNHG12. SNHG12 also promoted the transition of trophoblast cells from G0/G1 to S phase. CONCLUSION: Overall, lncRNA SNHG12 promoted the migration and invasion of trophoblast cells by inducing the progression of EMT.


Assuntos
Transição Epitelial-Mesenquimal/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pré-Eclâmpsia/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/patologia , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/patologia , Gravidez , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
20.
Aging (Albany NY) ; 11(23): 10902-10922, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31808752

RESUMO

Long non-coding RNAs contribute to the development of human cancers. We compared the long non-coding RNA levels in gastric cancer (GC) and para-cancerous tissues in the Gene Expression Omnibus, and found that small nucleolar RNA host gene 12 (SNHG12) was upregulated in GC tissues. Fluorescence in situ hybridization confirmed that SNHG12 is overexpressed in GC tissues. We then used data from The Cancer Genome Atlas to assess the association of SNHG12 expression with the clinicopathological characteristics and prognosis of GC patients and found that higher SNHG12 expression was associated with a greater tumor invasion depth and poorer survival. In vitro, silencing SNHG12 suppressed GC cell proliferation, migration and invasion, but induced apoptosis and cell cycle arrest. Overexpressing SNHG12 had the opposite effects. In xenografted mice, knocking down SNHG12 reduced GC tumor growth. Taken together, cancer pathway microarray and bioinformatics analyses, RNA pulldown assays, Western blotting and immunohistochemistry revealed that SNHG12 induces GC tumorigenesis by activating the phosphatidylinositol 3-kinase/AKT pathway. SNHG12 may thus be a useful marker for predicting poor survival in GC patients.


Assuntos
Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Apoptose , Ciclo Celular , Linhagem Celular , Movimento Celular , Cromonas/farmacologia , Células Epiteliais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Invasividade Neoplásica , Neoplasias Experimentais , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Estômago/citologia , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa