Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2201655119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191231

RESUMO

Playing a musical instrument engages numerous cognitive abilities, including sensory perception, selective attention, and short-term memory. Mounting evidence indicates that engaging these cognitive functions during musical training will improve performance of these same functions. Yet, it remains unclear the extent these benefits may extend to nonmusical tasks, and what neural mechanisms may enable such transfer. Here, we conducted a preregistered randomized clinical trial where nonmusicians underwent 8 wk of either digital musical rhythm training or word search as control. Only musical rhythm training placed demands on short-term memory, as well as demands on visual perception and selective attention, which are known to facilitate short-term memory. As hypothesized, only the rhythm training group exhibited improved short-term memory on a face recognition task, thereby providing important evidence that musical rhythm training can benefit performance on a nonmusical task. Analysis of electroencephalography data showed that neural activity associated with sensory processing and selective attention were unchanged by training. Rather, rhythm training facilitated neural activity associated with short-term memory encoding, as indexed by an increased P3 of the event-related potential to face stimuli. Moreover, short-term memory maintenance was enhanced, as evidenced by increased two-class (face/scene) decoding accuracy. Activity from both the encoding and maintenance periods each highlight the right superior parietal lobule (SPL) as a source for training-related changes. Together, these results suggest musical rhythm training may improve memory for faces by facilitating activity within the SPL to promote how memories are encoded and maintained, which can be used in a domain-general manner to enhance performance on a nonmusical task.


Assuntos
Atenção , Reconhecimento Facial , Memória de Curto Prazo , Música , Cognição , Música/psicologia , Percepção Visual
2.
J Physiol ; 602(1): 153-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987552

RESUMO

The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.


Assuntos
Cerebelo , Vibrissas , Camundongos , Animais , Vibrissas/fisiologia , Fenômenos Biomecânicos , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Córtex Cerebelar
3.
Neuroimage ; 299: 120834, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236853

RESUMO

BACKGROUND: Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS: In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS: We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION: The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.


Assuntos
Magnetoencefalografia , Córtex Somatossensorial , Percepção do Tato , Humanos , Masculino , Feminino , Magnetoencefalografia/métodos , Adulto Jovem , Adulto , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Percepção do Tato/fisiologia , Imageamento por Ressonância Magnética , Potenciais Somatossensoriais Evocados/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Conectoma/métodos
4.
J Neurophysiol ; 132(2): 544-569, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985936

RESUMO

Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.


Assuntos
Macaca mulatta , Nociceptores , Animais , Nociceptores/fisiologia , Masculino , Nociceptividade/fisiologia , Temperatura Alta , Percepção Visual/fisiologia , Limiar da Dor/fisiologia , Estimulação Luminosa , Reação de Fuga/fisiologia , Termorreceptores/fisiologia
5.
Cell Tissue Res ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352478

RESUMO

Although the liver of the lamprey, a group of cyclostomes that diverged the earliest among vertebrates, has abundant bile ducts in the larval stage, which degenerate during metamorphosis, there is no comparative study on its architecture with other early diverged vertebrates in terms of the morphological evolution of vertebrate livers. The present study was undertaken to compare the characteristics of the brook lamprey liver with those of the hagfish and banded houndshark, which have the portal triad type liver architecture, and to discuss its evolution. Although the liver of the brook lamprey had two-cell cords of hepatocytes lined by sinusoids in the ammocoetes larval stage, intrahepatic bile ducts around portal veins penetrated into the liver parenchyma with convolution and gradual reduction in diameter. They also faced dilated sinusoids. The epithelial cells had characteristic intercellular spaces. These characteristics were distinct from those of bile ducts in the hagfish and banded houndshark livers. Although the liver architectures of the hagfish and banded houndshark were similar, the latter penetrated the intrahepatic bile ducts more deeply along the portal veins than the former, in which intrahepatic bile ducts were restricted near the hilum. After metamorphosis, bile ducts degenerated in brook lampreys. These data indicate that the liver architecture of the ammocoetes larva is unique in the parenchymal distribution of bile ducts, their sinusoidal facing, and morphology among extant vertebrates. The periportal distribution of intrahepatic biliary structures may have been established prior to the divergence of the cyclostomes and gnathostomes.

6.
Cerebellum ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180693

RESUMO

Post-traumatic stress disorder (PTSD) is a debilitating mental health condition characterized by recurrent re-experiencing of traumatic events. Despite increasing evidence suggesting that the cerebellum is involved in PTSD pathophysiology, it remains unclear whether this involvement is related to symptoms directly resulting from previous trauma exposure, such as involuntary re-experiencing of the traumatic events, or reflects a broader cerebellar engagement in negative affective states. In this study, we investigated the specific role of the cerebellum in PTSD by employing a script reactivation paradigm with personalized traumatic and sad autobiographical memories in 28 individuals diagnosed with chronic PTSD. Functional magnetic resonance imaging (fMRI) data were collected while participants listened to their own autobiographical narratives recounted by a third person. Activation in the right cerebellar lobule VI was uniquely associated with traumatic autobiographical recall and was parametrically modulated by the severity of re-experiencing symptoms. In contrast, cerebellar Crus II showed increased activation during both traumatic and sad autobiographical recall, suggesting a broader involvement in processing negative emotions. Our findings highlight the unique contribution of the right cerebellar lobule VI in the processing of traumatic autobiographical memories, potentially through its engagement in low-level representation of sensory and emotional aspects of traumatic events.

7.
Cereb Cortex ; 33(17): 9908-9916, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429833

RESUMO

Individuals with anxiety and depression symptoms are vulnerable to sleep disturbances. The current study aimed to explore the shared neuro-mechanisms underlying the effect of anxiety and depression symptoms on sleep quality. We recruited a cohort of 92 healthy adults who underwent functional magnetic resonance imaging scanning. We measured anxiety and depression symptoms using the Zung Self-rating Anxiety/Depression Scales and sleep quality using the Pittsburgh Sleep Quality Index. Independent component analysis was used to explore the functional connectivity (FC) of brain networks. Whole-brain linear regression analysis showed that poor sleep quality was associated with increased FC in the left inferior parietal lobule (IPL) within the anterior default mode network. Next, we extracted the covariance of anxiety and depression symptoms using principal component analysis to represent participants' emotional features. Mediation analysis revealed that the intra-network FC of the left IPL mediated the association between the covariance of anxiety and depression symptoms and sleep quality. To conclude, the FC of the left IPL may be a potential neural substrate in the association between the covariance of anxiety and depression symptoms and poor sleep quality, and may serve as a potential intervention target for the treatment of sleep disturbance in the future.

8.
Cereb Cortex ; 33(12): 7500-7505, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918999

RESUMO

Recent work has shown that the occipital place area (OPA)-a scene-selective region in adult humans-supports "visually guided navigation" (i.e. moving about the local visual environment and avoiding boundaries/obstacles). But what is the precise role of OPA in visually guided navigation? Considering humans move about their local environments beginning with crawling followed by walking, 1 possibility is that OPA is involved in both modes of locomotion. Another possibility is that OPA is specialized for walking only, since walking and crawling are different kinds of locomotion. To test these possibilities, we measured the responses in OPA to first-person perspective videos from both "walking" and "crawling" perspectives as well as for 2 conditions by which humans do not navigate ("flying" and "scrambled"). We found that OPA responded more to walking videos than to any of the others, including crawling, and did not respond more to crawling videos than to flying or scrambled ones. These results (i) reveal that OPA represents visual information only from a walking (not crawling) perspective, (ii) suggest crawling is processed by a different neural system, and (iii) raise questions for how OPA develops; namely, OPA may have never supported crawling, which is consistent with the hypothesis that OPA undergoes protracted development.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Adulto , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Lobo Occipital/fisiologia , Córtex Cerebral/fisiologia
9.
J Neuroeng Rehabil ; 21(1): 58, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627779

RESUMO

BACKGROUND: Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS: We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS: The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS: The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Movimento/fisiologia , Extremidade Inferior , Imageamento por Ressonância Magnética
10.
Aesthetic Plast Surg ; 48(11): 2011-2017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438764

RESUMO

BACKGROUND: Protruding ears are the most common auricular abnormalities seen in children (1). Protruding ears are a condition that has social and psychological consequences due to its physical appearance and one of the main causes of peer bullying at young ages (2). While various surgical methods exist to address prominent ears, the options for correcting the lobule are relatively scarce. In this study, we are aimed to present the modified fish-tail technique that we have developed and to compare it with other techniques in the literature. METHODS: The patients were selected from the cases that underwent otoplasty for prominent ear correction in our clinic between 2020 and 2022. A total of 21 cases that required protruded lobule correction during otoplasty were included in our study. Keloid and hypertrophic scar formation, wound dehiscence, hematoma, infection and recurrence in the lobule were evaluated. The patients were followed up for at least 1 year for early and late complications. RESULTS: Each patient in the study underwent bilateral prominent ear correction, including bilateral modified fish-tail technique. All cases were followed for at least 12 months. There was no wound dehiscence, infection, recurrence in lobule prominence or hematoma during the follow-up period. No hypertrophic scar or keloid was observed in any case. CONCLUSIONS: Our method stands out for its ability to achieve both adjustable vertical height and effective lobule correction with a reduced need for skin excision. We recommend the modified fish-tail technique as an alternative technique for prominent lobule surgery. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to the Table of contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Feminino , Masculino , Criança , Procedimentos de Cirurgia Plástica/métodos , Adolescente , Resultado do Tratamento , Estudos Retrospectivos , Estética , Pavilhão Auricular/cirurgia , Pavilhão Auricular/anormalidades , Estudos de Coortes , Adulto Jovem
11.
Neuroimage ; 270: 119989, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858331

RESUMO

Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.


Assuntos
Multilinguismo , Leitura , Criança , Humanos , Mapeamento Encefálico , Estudos Transversais , Encéfalo/fisiologia , Idioma , Lobo Parietal/diagnóstico por imagem , Imageamento por Ressonância Magnética
12.
Neuroimage ; 268: 119869, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639004

RESUMO

Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.


Assuntos
Mapeamento Encefálico , Dislexia , Humanos , Criança , Encéfalo , Dislexia/diagnóstico por imagem , Lobo Parietal , Linguística , Imageamento por Ressonância Magnética
13.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G245-G249, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749570

RESUMO

Tumor heterogeneity is a hallmark of cancer but a challenging problem to dissect mechanistically. Less recognized is that cells within normal tissues are also remarkably diverse. Hepatocytes are a great example because their spatial positioning and the local microenvironment govern their genetic heterogeneity. Recent studies show that primary liver tumors display heterogeneity similar to that observed in the normal tissue providing clues to the cellular precursor of the tumor and how variations in the lobule microenvironment support tumor formation and aggressiveness. Identifying the principles that control cellular diversity in a healthy liver may highlight potential mechanisms driving hepatic tumor heterogeneity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fígado/patologia , Hepatócitos/patologia , Microambiente Tumoral
14.
Hum Brain Mapp ; 44(17): 5693-5711, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37614216

RESUMO

Several studies have examined the neural substrates of probabilistic decision-making, but few have systematically investigated the neural representations of the two objective attributes of probabilistic rewards, that is, the reward amount and the probability. Specifically, whether there are common or distinct neural activity patterns to represent the objective attributes and their association with the neural representation of the subjective valuation remains largely underexplored. We conducted two studies (nStudy1 = 34, nStudy2 = 41) to uncover distributed neural representations of the objective attributes and subjective value as well as their association with individual probability discounting rates. The amount and probability were independently manipulated to better capture brain signals sensitive to these two attributes and were presented simultaneously in Study 1 and successively in Study 2. Both univariate and multivariate pattern analyses showed that the brain activities in the superior parietal lobule (SPL), including the postcentral gyrus, were modulated by the amount of rewards and probability in both studies. Further, representational similarity analysis revealed a similar neural representation between these two objective attributes and between the attribute and valuation. Moreover, the SPL tracked the subjective value integrated by the hyperbolic function. Probability-related brain activations in the inferior parietal lobule were associated with the variability in individual discounting rates. These findings provide novel insights into a similar neural representation of the two attributes during probabilistic decision-making and perhaps support the common neural coding of stimulus objective properties and subjective value in the field of probabilistic discounting.


Assuntos
Encéfalo , Recompensa , Humanos , Encéfalo/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Mapeamento Encefálico , Sistema Límbico , Imageamento por Ressonância Magnética
15.
Hum Brain Mapp ; 44(6): 2129-2141, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602295

RESUMO

Discourse comprehension involves the construction of a mental representation of the situation model as well as a continuous update of this representation. This mental update is cognitively demanding and likely engages the multiple-demand network. However, there is little evidence for the involvement of the multiple-demand network during situation updating. In this study, we used fMRI to test whether situation updating based on the change of spatial location activated the multiple-demand network. In a discourse comprehension task, readers read two-sentence discourses in which the second sentence either continues or introduces a shift of the spatial location information presented in the first sentence. Compared to situation continuation, situation updating reliably activated the right superior parietal lobule. This area is a part of the multiple-demand network as defined by a digit N-back localizer task and locates within the dorsal attention network as defined in the previous study by Yeo et al. in 2011. Our results provide evidence for the reliable involvement of a specific area of the multiple-demand network in situation updating during high-level discourse processing.


Assuntos
Compreensão , Idioma , Humanos , Leitura , Imageamento por Ressonância Magnética
16.
Breast Cancer Res Treat ; 197(2): 277-285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380012

RESUMO

PURPOSE: Breast cancer risk is elevated in pathogenic germline BRCA 1/2 mutation carriers due to compromised DNA quality control. We hypothesized that if immunosurveillance promotes tumor suppression, then normal/benign breast lobules from BRCA carriers may demonstrate higher immune cell densities. METHODS: We assessed immune cell composition in normal/benign breast lobules from age-matched women with progressively increased breast cancer risk, including (1) low risk: 19 women who donated normal breast tissue to the Komen Tissue Bank (KTB) at Indiana University Simon Cancer Center, (2) intermediate risk: 15 women with biopsy-identified benign breast disease (BBD), and (3) high risk: 19 prophylactic mastectomies from women with germline mutations in BRCA1/2 genes. We performed immunohistochemical stains and analysis to quantitate immune cell densities from digital images in up to 10 representative lobules per sample. Median cell counts per mm2 were compared between groups using Wilcoxon rank-sum tests. RESULTS: Normal/benign breast lobules from BRCA carriers had significantly higher densities of immune cells/mm2 compared to KTB normal donors (all p < 0.001): CD8 + 354.4 vs 150.9; CD4 + 116.3 vs 17.7; CD68 + 237.5 vs 57.8; and CD11c + (3.5% vs 0.4% pixels positive). BBD tissues differed from BRCA carriers only in CD8 + cells but had higher densities of CD4 + , CD11c + , and CD68 + immune cells compared to KTB donors. CONCLUSIONS: These preliminary analyses show that normal/benign breast lobules of BRCA mutation carriers contain increased immune cells compared with normal donor breast tissues, and BBD tissues appear overall more similar to BRCA carriers.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Mama/patologia , Mutação em Linhagem Germinativa , Genes BRCA1 , Linfócitos T CD8-Positivos/patologia , Mutação , Proteína BRCA1/genética
17.
Cogn Affect Behav Neurosci ; 23(2): 323-339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788200

RESUMO

Humans read the minds of others to predict their actions and efficiently navigate social environments, a capacity called mentalizing. Accumulating evidence suggests that the cerebellum, especially Crus 1 and 2, and lobule IX are involved in identifying the sequence of others' actions. In the current study, we investigated the neural correlates that underly predicting others' intentions and how this plays out in the sequence of their actions. We developed a novel intention prediction task, which required participants to put protagonists' behaviors in the correct chronological order based on the protagonists' honest or deceitful intentions (i.e., inducing true or false beliefs in others). We found robust activation of cerebellar lobule IX and key mentalizing areas in the neocortex when participants ordered protagonists' intentional behaviors compared with not ordering behaviors or to ordering object scenarios. Unlike a previous task that involved prediction based on personality traits that recruited cerebellar Crus 1 and 2, and lobule IX (Haihambo et al., 2021), the present task recruited only the cerebellar lobule IX. These results suggest that cerebellar lobule IX may be generally involved in social action sequence prediction, and that different areas of the cerebellum are specialized for distinct mentalizing functions.


Assuntos
Mentalização , Neocórtex , Humanos , Intenção , Cerebelo/fisiologia , Mentalização/fisiologia , Imageamento por Ressonância Magnética
18.
J Transl Med ; 21(1): 246, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029372

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impaired social and communication skills, narrow interests, and repetitive behavior. It is known that the cerebellum plays a vital role in controlling movement and gait posture. However, recently, researchers have reported that the cerebellum may also be responsible for other functions, such as social cognition, reward, anxiety, language, and executive functions. METHODS: In this study, we ascertained volumetric differences from cerebellar lobular analysis from children with ASD, ASD siblings, and typically developing healthy controls. In this cross-sectional study, a total of 30 children were recruited, including children with ASD (N = 15; mean age = 27.67 ± 5.1 months), ASD siblings (N = 6; mean age = 17.5 ± 3.79 months), and typically developing children (N = 9; mean age = 17.67 ± 3.21 months). All the MRI data was acquired under natural sleep without using any sedative medication. We performed a correlation analysis with volumetric data and developmental and behavioral measures obtained from these children. Two-way ANOVA and Pearson correlation was performed for statistical data analysis. RESULTS: We observed intriguing findings from this study, including significantly increased gray matter lobular volumes in multiple cerebellar regions including; vermis, left and right lobule I-V, right CrusII, and right VIIb and VIIIb, respectively, in children with ASD, compared to typically developing healthy controls and ASD siblings. Multiple cerebellar lobular volumes were also significantly correlated with social quotient, cognition, language, and motor scores with children with ASD, ASD siblings, and healthy controls, respectively. CONCLUSIONS: This research finding helps us understand the neurobiology of ASD and ASD-siblings, and critically advances current knowledge about the cerebellar role in ASD. However, results need to be replicated for a larger cohort from longitudinal research study in future.


Assuntos
Transtorno do Espectro Autista , Humanos , Pré-Escolar , Lactente , Irmãos , Estudos Transversais , Cerebelo/diagnóstico por imagem , Estudos Longitudinais
19.
J Cutan Pathol ; 50(2): 140-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36107728

RESUMO

AIM: Post-radiation angiosarcoma is an iatrogenic event seen in the setting of breast cancer treatment. Histopathologically, there are morphologic variants of angiosarcoma that mimic benign entities, including the capillary lobule variant of post-radiation angiosarcoma. We present the largest case series to date of this histopathologic variant of post-radiation angiosarcoma. METHODS AND RESULTS: Cases of the capillary lobule variant of post-radiation angiosarcoma from institutional/consultation archives from 2008 to June 2022 were reviewed. For inclusion, tumors had to occur in irradiated skin and exhibit a multi-lobular proliferation of tightly packed capillary-like vessels, as previously described in this variant. Prior ancillary studies were also reviewed. Eight cases met the criteria. All occurred in women treated with radiation for breast cancer (median age 75 years). All cases had similar findings, including a multi-lobular proliferation of tightly packed vessels, infiltrative cords, and atypical single endothelial cells. A conventional angiosarcoma pattern was also seen in five cases. All cases tested were positive for vascular markers (CD31, CD34, and/or ERG) and MYC. MYC amplification was shown by FISH in all cases tested. Smooth muscle actin (SMA) was positive in pericytes in the capillary lobules in all five cases tested and areas of conventional angiosarcoma in two of three cases. CONCLUSIONS: The capillary lobule variant of angiosarcoma is a rare and therefore potentially under-recognized variant of post-radiation angiosarcoma. The lobular architecture and SMA positivity may mimic benign vascular proliferations. Careful attention to histopathologic features and ancillary tests may facilitate accurate diagnosis.


Assuntos
Neoplasias da Mama , Hemangiossarcoma , Neoplasias Cutâneas , Doenças Vasculares , Feminino , Humanos , Hemangiossarcoma/etiologia , Hemangiossarcoma/patologia , Células Endoteliais/patologia , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Pele/patologia , Doenças Vasculares/patologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia
20.
Cereb Cortex ; 33(2): 385-402, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35220424

RESUMO

Lonely people tend to evaluate social exchanges negatively and to display difficulties in interactions. Interpersonal synchronization is crucial for achieving positive interactions, promoting affinity, closeness, and satisfaction. However, little is known about lonely individuals' ability to synchronize and about their brain activity while synchronizing. Following the screening of 303 participants, we recruited 32 low and 32 high loneliness participants. They were scanned while engaged in movement synchronization, using a novel dyadic interaction paradigm. Results showed that high loneliness individuals exhibited a reduced ability to adapt their movement to their partner's movement. Intriguingly, during movement adaptation periods, high loneliness individuals showed increased activation in the action observation (AO) system, specifically in the inferior frontal gyrus and the inferior parietal lobule. They did not show increased activation in the dorsomedial prefrontal cortex, which in the context of synchronization was suggested to be related to gap-monitoring. Based on these findings, we propose a model according to which lonely people may require stronger activation of their AO system for alignment, to compensate for some deficiency in their synchronization ability. Despite this hyperactivation, they still suffer from reduced synchronization capacity. Consequently, synchronization may be a relevant intervention area for the amelioration of loneliness.


Assuntos
Relações Interpessoais , Solidão , Humanos , Córtex Pré-Frontal/fisiologia , Movimento , Lobo Parietal/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa